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This supplemental information contains details to auxiliary proofs that are relatively

straightforward adaptations of the corresponding proofs in Bernard (2024).

H Dynamics of the continuation value

H.1 SDE representation of PPE

Proof of Lemma 4.1. Fix a strategy profile 𝐴 and abbreviate𝑊 := 𝑊 (𝑆0, 𝐴). Note that𝑊 is
bounded since it takes values in V0. For the first direction, it remains to show that𝑊 satisfies
SDE (5). LetH denote the filtration generated by (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z and

∫
𝜎(𝑆𝑡) d𝑍𝑡 and letM be

the filtration generated by all orthogonal information inF. Because (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z are pairwise
orthogonal and orthogonal to

∫
𝜎(𝑆𝑡) d𝑍𝑡 , Theorem IV.36 in Protter (2005) implies that the

stable subspace generated by
∫
𝜎(𝑆𝑡) d𝑍𝑡 and (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z is the space of all stochastic

integrals with respect to these processes. Therefore, by Corollary 1 to Theorem IV.37
in Protter (2005), any square-integrable F-martingale can be uniquely decomposed into the
sum of a square-integrable M-martingale and stochastic integrals with respect to

∫
𝜎(𝑆𝑡) d𝑍𝑡

and (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z . To apply the result, fix a player 𝑖, a time 𝑇 > 0, and set 𝑤𝑖
𝑇

:= 𝑊 𝑖
𝑇
−

𝑟
∫ 𝑇

0
(
𝑊 𝑖
𝑡 − 𝑔𝑖 (𝑆𝑡 , 𝐴𝑡)

)
d𝑡. The unique martingale representation for E

[
𝑤𝑖
𝑇

��F𝑡 ] implies that
there exist an F0-measurable 𝑐𝑖

𝑇
, predictable and square-integrable processes

(
𝛽𝑖
𝑡,𝑇

)
0≤𝑡≤𝑇 and(

𝛿𝑖
𝑡,𝑇
(𝑦, 𝑦′)

)
0≤𝑡≤𝑇 for (𝑦, 𝑦′) ∈ Z and a (M, 𝑄𝐴

𝑇
)-martingale 𝑁 𝑖 with 𝑁 𝑖0 = 0 such that

𝑤𝑖𝑇 = 𝑐𝑖𝑇 + 𝑟
∫ 𝑇

0
𝛽𝑖𝑡,𝑇

(
𝜎(𝑆𝑡) d𝑍𝑡 − 𝜇(𝑆𝑡 , 𝐴𝑡) d𝑡

)
+

∑︁
(𝑦,𝑦′)∈Z

𝑟

∫ 𝑇

0
𝛿𝑖𝑡,𝑇 (𝑦, 𝑦

′)
(
d𝐽𝑦,𝑦

′

𝑡 − 𝜆𝑦,𝑦′ (𝐴𝑡)d𝑡
)
+ 𝑁 𝑖𝑇,𝑇 .

To prove that (5) holds, it remains to show that 𝑐𝑖
𝑇
, 𝛽𝑖

𝑡,𝑇
, 𝛿𝑖

𝑡,𝑇
(𝑦, 𝑦′) and 𝑁 𝑖

𝑡,𝑇
do not depend

∗Department of Economics, University of Wisconsin–Madison, bbernard3@wisc.edu.

1

mailto:bbernard3@wisc.edu


on 𝑇 . It follows from (2) and Fubini’s theorem that

𝑤𝑖𝑇 = 𝑊 𝑖
𝑇 + 𝑟

∫ 𝑇

0
𝑔𝑖 (𝑆𝑡 , 𝐴𝑡) d𝑡 − 𝑟

∫ ∞

0

∫ 𝑠∧𝑇

0
𝑟e−𝑟 (𝑠−𝑡)E𝑄𝐴

𝑠

[
𝑔𝑖 (𝑆𝑠, 𝐴𝑠)

�� F𝑡 ] d𝑡 d𝑠. (40)

Let 𝑇 ≤ 𝑇 and take conditional expectations on F𝑇 under 𝑄𝐴
𝑇

of (40) to deduce that

E𝑄𝐴
𝑇

[
𝑤𝑖𝑇

��F𝑇 ] − 𝑤𝑖𝑇 = E𝑄𝐴
𝑇

[
𝑊 𝑖
𝑇

��F𝑇 ] −𝑊 𝑖

𝑇
+ 𝑟

∫ 𝑇

𝑇

E𝑄𝐴
𝑡

[
𝑔𝑖 (𝑆𝑡 , 𝐴𝑡)

��F𝑇 ] d𝑡

− 𝑟
∫ ∞

𝑇

∫ 𝑠∧𝑇

𝑇

𝑟e−𝑟 (𝑠−𝑡)E𝑄𝐴
𝑠

[
𝑔𝑖 (𝑆𝑠, 𝐴𝑠)

��F𝑇 ] d𝑡 d𝑠

= E𝑄𝐴
𝑇

[
𝑊 𝑖
𝑇

��F𝑇 ] −𝑊 𝑖

𝑇
−
∫ ∞

𝑇

𝑟e−𝑟 (𝑠−𝑇)E𝑄𝐴
𝑠

[
𝑔𝑖 (𝑆𝑠, 𝐴𝑠)

��F𝑇 ] d𝑠

+
∫ ∞

𝑇

𝑟e−𝑟 (𝑠−𝑇)E𝑄𝐴
𝑠

[
𝑔𝑖 (𝑆𝑠, 𝐴𝑠)

��F𝑇 ] d𝑠

= 0.

Taking 𝑇 = 0, this shows that 𝑐𝑖
𝑇
= 𝑊 𝑖

0 does not depend on 𝑇 . For arbitrary 𝑇 , it implies

𝑤𝑖
𝑇
= 𝑊 𝑖

0 + 𝑟
∫ 𝑇

0
𝛽𝑖𝑡,𝑇

(
𝜎(𝑆𝑡) d𝑍𝑡 − 𝜇(𝑆𝑡 , 𝐴𝑡) d𝑡

)
+

∑︁
(𝑦,𝑦′)∈Z

𝑟

∫ 𝑇

0
𝛿𝑖𝑡,𝑇 (𝑦, 𝑦

′)
(
d𝐽𝑦,𝑦

′

𝑡 − 𝜆𝑦,𝑦′ (𝐴𝑡) d𝑡
)
+ 𝑁 𝑖

𝑇,𝑇
,

hence 𝛽𝑖· ,𝑇 = 𝛽𝑖· ,𝑇 and 𝛿𝑖· ,𝑇 (𝑦, 𝑦
′) = 𝛿𝑖· ,𝑇 (𝑦, 𝑦

′) for every (𝑦, 𝑦′) ∈ Z a.e. on [0, 𝑇] and
𝑁 𝑖
𝑇,𝑇

= 𝑁 𝑖
𝑇,𝑇

a.s. by the uniqueness of the orthogonal decomposition. Taking F𝑡-conditional
expectations under 𝑄𝐴

𝑇
, we deduce 𝑁 𝑖

𝑡,𝑇
= 𝑁 𝑖

𝑡,𝑇
a.s. for 𝑡 ∈ [0, 𝑇], proving that the integral

representation is independent of 𝑇 . We thus omit the subscript 𝑇 and 𝑇 of the constructed
processes. To arrive at (5), we move the Poisson processes that do not correspond to the
current state into the orthogonal part by setting

𝑀 𝑖 := 𝑁 𝑖 +
∑︁

(𝑦,𝑦′)∈Z
𝑟

∫ ·

0
𝛿𝑖𝑡 (𝑦, 𝑦′)1{𝑆𝑡−≠𝑦}

(
d𝐽𝑦,𝑦

′

𝑡 − 1 d𝑡
)

and 𝛿𝑖 (𝑦) := 𝛿𝑖 (𝑆−, 𝑦)1{(𝑆− ,𝑦)∈Z} for any 𝑦 ∈ Y . Because 𝑁 𝑖 is orthogonal of 𝑍 and
(𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z , and the processes 𝐽𝑦,𝑦′ are orthogonal to each other and of 𝑍 , it follows that
𝑀 𝑖 is a martingale orthogonal to

∫
𝜎(𝑆𝑡) d𝑍𝑡 and to the processes 𝐽𝑦 :=

∑
0<𝑠≤𝑡 Δ𝐽

𝑆𝑠− ,𝑦
𝑡 that

counts transitions to 𝑦 from the current state. Note that 𝛿𝑖 (𝑦) is square-integrable since the
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processes 𝛿𝑖 (𝑦, 𝑦′) are, and it is predictable because 𝛿𝑖 (𝑦, 𝑦′) and 𝑆− are. By construction,

𝑀 𝑖 +
∑︁
𝑦∈Y

𝑟

∫ ·

0
𝛿𝑖 (𝑦)

(
d𝐽𝑦𝑡 −𝜆𝑆𝑡− ,𝑦 (𝐴𝑡) d𝑡

)
= 𝑁 𝑖 +

∑︁
(𝑦,𝑦′)∈Z

𝑟

∫ 𝑇

0
𝛿𝑖𝑡,𝑇 (𝑦, 𝑦

′)
(
d𝐽𝑦,𝑦

′

𝑡 −𝜆𝑦,𝑦′ (𝐴𝑡) d𝑡
)
,

hence𝑊 satisfies (5) for processes 𝛽𝑖,
(
𝛿𝑖 (𝑦)

)
𝑦∈Y , and 𝑀 𝑖.

To show the converse, let (𝑊, 𝑆, 𝐴, 𝛽, 𝛿, 𝑍, (𝐽𝑦)𝑦, 𝑀) satisfy (5). Itō’s formula yields

d(e−𝑟𝑡𝑊 𝑖
𝑡 ) = −𝑟e−𝑟𝑡𝑔𝑖 (𝑆𝑡 , 𝐴𝑡) d𝑡 + 𝑟e−𝑟𝑡𝛽𝑖𝑡

(
𝜎(𝑆𝑡) d𝑍𝑡 − 𝜇(𝑆𝑡 , 𝐴𝑡) d𝑡

)
+ 𝑟e−𝑟𝑡

∑︁
𝑦∈Y

𝛿𝑖𝑡 (𝑦)
(
d𝐽𝑦𝑡 − 𝜆𝑆𝑡− ,𝑦 (𝐴𝑡) d𝑡

)
+ e−𝑟𝑡 d𝑀𝑖

𝑡 .
(41)

Since 𝑀𝑖 is strongly orthogonal to
∫
𝜎(𝑆𝑡) d𝑍𝑡 and (𝐽𝑦)𝑦∈Y , it is also strongly orthogonal to

the density process given in (22). Therefore, 𝑀 𝑖 is a martingale also under 𝑄𝐴. Integrating
(41) from 𝑡 to 𝑇 and taking 𝑄𝐴

𝑇
-conditional expectations on F𝑡 thus yields

𝑊 𝑖
𝑡 =

∫ 𝑇

𝑡

𝑟e−𝑟 (𝑠−𝑡)E𝑄𝐴
𝑠

[
𝑔𝑖 (𝑆𝑠, 𝐴𝑠)

�� F𝑡 ] d𝑠 + e−𝑟 (𝑇−𝑡)E𝑄𝐴
𝑇

[
𝑊 𝑖
𝑇

��F𝑡 ] .
Since 𝑊 is bounded, the second summand converges to zero a.s. as 𝑇 tends to ∞, hence 𝑊 𝑖

𝑡

is indeed player 𝑖’s continuation value under strategy profile 𝐴 in state 𝑆𝑡 . □

Proof of Lemma 4.3. Fix a strategy profile 𝐴 and let 𝐴̃ be a strategy profile involving a
unilateral deviation of some player 𝑖, that is, 𝐴̃−𝑖 = 𝐴−𝑖 a.e. By Lemma 4.1, there exist
processes 𝛽, 𝛿, and 𝑀 that satisfy (5). Integrating (41) from 𝑡 to 𝑢 yields

𝑊 𝑖
𝑡 (𝑆𝑡 , 𝐴) = −

∫ 𝑢

𝑡

e−𝑟 (𝑠−𝑡)
(
𝛽𝑖𝑠

(
𝜎(𝑆𝑠) d𝑍𝑠 − 𝜇(𝑆𝑠, 𝐴𝑠) d𝑠

)
− 𝑔𝑖 (𝑆𝑠, 𝐴𝑠) d𝑠 − d𝑀 𝑖

𝑠

)
−
∑︁
𝑦∈Y

∫ 𝑢

𝑡

e−𝑟 (𝑠−𝑡)𝛿𝑖𝑠 (𝑦)
(
d𝐽𝑦𝑠 − 𝜆𝑆𝑠− ,𝑦 (𝐴𝑠) d𝑠

)
+ e−𝑟 (𝑢−𝑡)𝑊 𝑖

𝑢 (𝑆𝑢, 𝐴).

Note that e−𝑟 (𝑢−𝑡)𝑊 𝑖
𝑢 (𝑆𝑢, 𝐴) vanishes as 𝑢 → ∞ because 𝑊 (𝑆, 𝐴) is in the bounded set V0.

Since 𝑀 is a martingale up to time 𝑢 also under 𝑄 𝐴̃
𝑢 , taking conditional expectations yields

𝑊 𝑖
𝑡

(
𝑆𝑡 , 𝐴̃

)
= lim
𝑢→∞

E
𝑄 𝐴̃

𝑢

[∫ 𝑢

𝑡

𝑟e−𝑟 (𝑠−𝑡)𝑔𝑖
(
𝑆𝑠, 𝐴̃𝑠

)
d𝑠

����F𝑡]
= 𝑊 𝑖

𝑡 (𝑆𝑡 , 𝐴) + lim
𝑢→∞

E
𝑄 𝐴̃

𝑢

[∫ 𝑢

𝑡

𝑟e−𝑟 (𝑠−𝑡)
( (
𝑔𝑖
(
𝑆𝑠, 𝐴̃𝑠

)
− 𝑔𝑖 (𝑆𝑠, 𝐴𝑠)

)
d𝑠

+𝛽𝑖𝑠
(
𝜎(𝑆𝑠) d𝑍𝑠 − 𝜇(𝑆𝑠, 𝐴𝑠) d𝑠

)
+
∑︁
𝑦∈Y

𝛿𝑖𝑠 (𝑦)
(
d𝐽𝑦𝑠 − 𝜆𝑆𝑠− ,𝑦 (𝐴𝑠) d𝑠

) )����F𝑡] a.s.
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Note that the state process 𝑆 is the same process under strategy profile 𝐴 and 𝐴̃ (as a map
from Ω × [0,∞) to Y), it merely has a different distribution under 𝑄𝐴

𝑢 and 𝑄 𝐴̃
𝑢 . Because 𝛽

is constructed using a martingale representation result for the bounded random variable 𝑤𝑖
𝑇

in (40), the process
∫ ·
𝑡
𝑟e−𝑟 (𝑠−𝑡)𝛽𝑖𝑠

(
𝜎(𝑆𝑠) d𝑍𝑠 − 𝜇(𝑆𝑠, 𝐴𝑠) d𝑠

)
is a bounded mean oscillation

(BMO) martingale under the probability measure 𝑄𝐴
𝑢 up to any time 𝑢 > 𝑡. It follows

from Theorem 3.6 in Kazamaki (2006) that
∫ ·
𝑡
𝑟e−𝑟 (𝑠−𝑡)𝛽𝑖𝑠

(
𝜎(𝑆𝑠) d𝑍𝑠 − 𝜇(𝑆𝑠, 𝐴̃𝑠) d𝑠

)
is a

martingale under𝑄 𝐴̃
𝑢 . Since𝑊 (𝑆, 𝐴) lies in V0, each 𝛿(𝑦) is uniformly bounded 𝑃-a.s., hence

also𝑄 𝐴̃
𝑢 -a.s. for any 𝑢 > 𝑡. The lemma after Theorem IV.29 in Protter (2005) thus implies that∫ ·

𝑡
𝑟e−𝑟 (𝑠−𝑡)𝛿𝑖𝑠 (𝑦)

(
d𝐽𝑦𝑠 − 𝜆𝑆𝑠− ,𝑦 ( 𝐴̃𝑠) d𝑠

)
is a 𝑄 𝐴̃

𝑢 -martingale up to any time 𝑢 > 𝑡. Together
with Fubini’s theorem, this implies

𝑊 𝑖
𝑡

(
𝑆𝑡 , 𝐴̃

)
−𝑊 𝑖

𝑡 (𝑆𝑡 , 𝐴) =
∫ ∞

𝑡

e−𝑟 (𝑠−𝑡)E
𝑄 𝐴̃

𝑠

[
𝑔𝑖
(
𝑆𝑠, 𝐴̃𝑠

)
− 𝑔𝑖 (𝑆𝑠, 𝐴𝑠) + 𝛽𝑖𝑠

(
𝜇
(
𝑆𝑠, 𝐴̃𝑠

)
(42)

− 𝜇(𝑆𝑠, 𝐴𝑠)
)
+ 𝛿𝑖𝑠

(
𝜆
(
𝑆𝑠, 𝐴̃𝑠

)
− 𝜆(𝑆𝑠, 𝐴𝑠)

) ��� F𝑡 ] d𝑠 a.s.

If (𝛽, 𝛿) enforces 𝐴 in state 𝑆, the above conditional expectation is non-positive, hence 𝐴 is
a PPE. To show the converse, assume towards a contradiction that there exist a player 𝑖 and a
set Ξ ⊆ Ω × [0,∞) with 𝑃 ⊗ 𝐿𝑒𝑏𝑒𝑠𝑔𝑢𝑒(Ξ) > 0, such that some strategy 𝐴̂𝑖 satisfies

𝑔𝑖
(
𝑆, 𝐴̂

)
− 𝑔𝑖 (𝑆, 𝐴) + 𝛽𝑖

(
𝜇
(
𝑆, 𝐴̂

)
− 𝜇(𝑆, 𝐴)

)
+ 𝛿𝑖

(
𝜆
(
𝑆, 𝐴̂

)
− 𝜆(𝑆, 𝐴)

)
> 0 (43)

on the set Ξ, where we denoted 𝐴̂ =
(
𝐴̂𝑖, 𝐴−𝑖

)
for the sake of brevity. Because 𝛽 and 𝛿 are

predictable and both 𝐴 and 𝐴̂ are the limit of a sequence of predictable processes 𝐴(𝑛) and
𝐴̂(𝑛) , there must exist predictable Ξ𝑛 → Ξ with 𝑃 ⊗ 𝐿𝑒𝑏𝑒𝑠𝑔𝑢𝑒(Ξ𝑛) > 0 such that (43) holds
for processes 𝐴(𝑛) and 𝐴̂(𝑛) . Thus, 𝐴̃𝑖 := lim𝑛→∞ 𝐴̂(𝑛),𝑖1Ξ𝑛

+ 𝐴(𝑛),𝑖1Ξ𝑐
𝑛

is a valid strategy for
player 𝑖. For 𝐴̃ =

(
𝐴̃𝑖, 𝐴−𝑖

)
, the expectation in (42) is strictly positive for 𝑡 = 0, a contradiction

to the fact that 𝐴 is a PPE. □

H.2 Concatenations of solutions to SDE (5)

In many of the proofs, we will concatenate enforceable solutions to SDE (5), which is subject
to some subtle measurability issues. Without restrictions on 𝛽 and 𝛿, solutions to (5) are weak
solutions, which means that the entire stochastic framework (Ω,F ,F, 𝑃, 𝑍, (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z ) is
part of the solution. Thus, more formally, the set B𝑦 (W) is the set of all payoffs 𝑤 ∈ V , for
which there exists a stochastic framework (Ω,F ,F, 𝑃, 𝑍, (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z ) containing a solution
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(𝑊, 𝑆, 𝐴, 𝛽, 𝛿, 𝑀) to (5) on J0, 𝜏1K with 𝑊0 = 𝑤, 𝑆0 = 𝑦, and 𝑊𝜏1 ∈ W𝑆𝜏1
𝑃-a.s., such that

on J0, 𝜏1)), 𝑊 ∈ B(W) and (𝛽, 𝛿) enforces 𝐴, where 𝜏1 is the first jump time of any of the
processes (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z .17 At time 𝜏1, we would like to attain 𝑊𝜏1 with another enforceable
solution to (5) that exists by definition of B𝑆𝜏1

(W). However, the continuation solutions may
live on separate probability spaces for each realization of𝑊𝜏1 . The following result, adapted
from Lemma A.1 in Bernard (2024), establishes that there exists a probability space that
contains the concatenation.

Lemma H.1. Let 𝑋 be a V0-valued random variable with distribution 𝜈. Equivalent are:

(i) 𝑋 ∈ B𝑦 (W) 𝜈-a.s.,

(ii) There exists
(
Ω,F ,F, 𝑃, 𝑍, (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z

)
containing a solution (𝑊, 𝑆, 𝐴, 𝛽, 𝛿, 𝑀)

to (5) such that 𝑋 is F0-measurable with 𝜈 = 𝑃 ◦ 𝑋−1, 𝑊0 = 𝑋 𝑃-a.s., 𝑆0 = 𝑦 𝑃-a.s.,

𝑊𝜏1 ∈ W𝑆𝜏1
𝑃-a.s., and on almost everywhere on J0, 𝜏1)), (𝛽, 𝛿) enforces 𝐴 and 𝑊 ∈

B𝑦 (W), where 𝜏1 is the first jump time of any of the processes (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z .

Moreover, a similar equivalence holds for random variables 𝑋 ∈ E (𝑦) 𝜈-a.s., where the

solution in (ii) simply has to satisfy𝑊0 = 𝑋 𝑃-a.s., 𝑆0 = 𝑦 𝑃-a.s., and (𝛽, 𝛿) enforces 𝐴.

Crucial in the proof are (a) that the path space of the solutions coincide for different
realizations of 𝑋 and (b) that the path space is complete and separable for the Skorohod metric.
Then the different probability spaces can be aggregated with a regular conditional probability.
Neither of these properties depend on whether we are studying pure or behavior strategies
since in either case the path space of all strategy profiles is compact by Tychonov’s theorem.
Since neither property depends on whether we study repeated or stochastic games, the proof
of Lemma A.1 in Bernard (2024) applies directly. We can now formalize the concatenation
procedure as follows.

Lemma H.2. Fix a state 𝑦, a bounded payoff setX𝑦, and a family of payoff setsW = (W𝑦′)𝑦′∈Y
such that for every 𝑤 ∈ X𝑦, there exists a stochastic framework

(
Ω,F ,F, 𝑃, 𝑍, (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z

)
containing a solution (𝑊, 𝑆, 𝐴, 𝛽, 𝛿, 𝑀) to (5) for 𝑆 defined in (21) on the stochastic interval

J0, 𝜏∧𝜏1K, where 𝜏1 is the first jump time of (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z and 𝜏 is anF-stopping time such that:

(i) 𝑊0 = 𝑤 and 𝑆0 = 𝑦 𝑃-a.s.,

17We say that a stochastic process 𝑋 satisfies a certain property on a set Ξ ⊆ Ω × [0,∞) if 𝑋𝑡 (𝜔) satisfies
that property for 𝑃 ⊗ 𝐿𝑒𝑏𝑒𝑠𝑔𝑢𝑒-almost every (𝜔, 𝑡) ∈ Ξ.
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(ii) 𝑊 ∈ X𝑦, (𝛽, 𝛿) enforces 𝐴 in 𝑆, and𝑊 + 𝑟𝛿(𝑦′) ∈ W𝑦′ for each 𝑦′ ∈ Y on J0, 𝜏 ∧ 𝜏1)),

(iii) On {𝜏 < 𝜏1}, we have𝑊𝜏 ∈ B𝑦 (W).

Then for every 𝑤 ∈ X𝑦, there exists a stochastic framework
(
Ω̂, F̂ , F̂, 𝑃̂, 𝑍̂ , (𝐽𝑦,𝑦′)𝑦,𝑦′∈Z

)
containing a solution (𝑊̂, 𝑆, 𝐴̂, 𝛽, 𝛿, 𝑀̂) to (5) that coincides with (𝑊, 𝑆, 𝐴, 𝛽, 𝛿, 𝑀) on

J0, 𝜏 ∧ 𝜏1)), such that (𝛽, 𝛿) enforces 𝐴̂ in state 𝑆 on J0, 𝜏1)), 𝑊̂ ∈ B𝑆 (W) on J𝜏, 𝜏1)) and

𝑊̂𝜏1 ∈ W𝑆 𝜏̂1
𝑃̂-a.s., where 𝜏1 is the first jump time of any of the processes (𝐽𝑦,𝑦′)𝑦,𝑦′∈Z . In

particular, X𝑦 ⊆ B𝑦 (W).
Moreover, if W𝑦′ ⊆ B𝑦′ (W) for each 𝑦′ ∈ Y , then the above result holds for the first

stopping time 𝜏1 of any of the processes (𝐽𝑦,𝑦′)𝑦,𝑦′∈Z strictly after 𝜏1.

Proof. Fix 𝑤 ∈ X𝑦, a stochastic framework
(
Ω,F ,F, 𝑃, 𝑍, (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z

)
, an F-stopping

time 𝜏, and a solution (𝑊, 𝑆, 𝐴, 𝛽, 𝛿, 𝑀) to (5) on J0, 𝜏K with all the stated properties. By
Lemma H.1, on {𝜏 < 𝜏1} there exists a stochastic framework

(
Ω̃, F̃ , F̃, 𝑃̃, 𝑍̃ , (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z

)
containing a W-enforceable solution

(
𝑊̃, 𝑆, 𝐴̃, 𝛽, 𝛿, 𝑀̃

)
to (5) such that 𝑊̃0 is distributed

under 𝑃̃ as𝑊𝜏 is under 𝑃. We choose Ω and Ω̃ to be the Polish path spaces of these solutions
so that there exists a regular conditional probability 𝑃̂ on Ω̂ = Ω × Ω̃ with marginal 𝑃 on
Ω. Let F̂ :=

(
F̂𝑡

)
𝑡≥0 denote the 𝑃̂-augmented filtration such that F̂𝑡 contains F𝑡∧𝜏 ∨ F̃𝑡−𝜏∨0.

Define the processes 𝑍̂ and 𝐽𝑦,𝑦′ by setting

𝑍̂𝑡 = 𝑍𝑡∧𝜏 + 𝑍̃𝑡−𝜏1{𝑡>𝜏}, 𝐽
𝑦,𝑦′

𝑡 = 𝐽
𝑦,𝑦′

𝑡∧𝜏 + 𝐽𝑦,𝑦
′

𝑡−𝜏 1{𝑡>𝜏} .

Because Brownian motion and Poisson processes have independent and identically distributed
increments, 𝑍̂ is an F̂-Brownian motion and 𝐽𝑦,𝑦′ for any (𝑦, 𝑦′) ∈ Z is an F̂-Poisson process.
Define the concatenated processes 𝑊̂ , 𝑆, 𝐴̂, 𝛽, 𝛿, and 𝑀̂ by setting

𝑊̂ :=
(
𝑊1J0,𝜏K + 𝑊̃ · −𝜏1((𝜏,∞))

)
1{𝜏<𝜏1} +𝑊1{𝜏≥𝜏1}

and similarly for 𝐴̂, 𝑆, 𝛽, 𝛿, and 𝑀̂ . By construction, 𝑆 satisfies (21) for 𝐴̂ and
(
𝑊̂, 𝑆, 𝐴̂, 𝛽, 𝛿, 𝑀̂

)
coincides with (𝑊, 𝑆, 𝐴, 𝛽, 𝛿, 𝑀) on J0, 𝜏 ∧ 𝜏1)). Since 𝑃̂ is a regular conditional probability,
𝑊̂0 = 𝑤 and 𝑊̂𝜏1 ∈ W𝑆 𝜏̂1

𝑃̂-a.s. and
(
𝑊̂, 𝐴̂, 𝛽, 𝛿, 𝑀̂

)
has the desired properties on J0, 𝜏1)).

The above concatenation is carried out only on the event {𝜏 < 𝜏1}. If W𝑦′ ⊆ B𝑦′ (W)
holds for each state 𝑦′, then (ii) implies that 𝑊𝜏1 ∈ B𝑆𝜏1

(W) on {𝜏1 ≤ 𝜏}. We can thus
carry out the same steps on {𝜏1 ≤ 𝜏} attaining 𝑊𝜏1 to obtain a solution until the first state
transitionjump time 𝜏1 strictly after 𝜏1. □
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Proof of Lemma 4.7. Fix any familyW of bounded self-generating sets and any state 𝑦. Since
B(W) is the largest family of bounded payoff sets generated by W , we must have W𝑦′ ⊆
B𝑦′ (W) for any state 𝑦′. Fix now an arbitrary 𝑤 ∈ W𝑦′ and any enforceable solution to (5) on
J0, 𝜏1K attaining 𝑤 ∈ W𝑦′ . An application of Lemma H.2 for X𝑦 = W𝑦 and 𝜏 = 𝜏1 shows that
the solution can be extended to the second state transition 𝜏2. Since there are countably many
state transitions, an iteration of this procedure shows that 𝑤 is attainable by an enforceable
solution on Ω × [0,∞), hence 𝑤 ∈ E (𝑦) by Lemma 4.3.

To show that E is self-generating, fix any 𝑦 and 𝑤 ∈ E (𝑦). By Lemma 4.3, there exists
an enforceable solution (𝑊, 𝐴, 𝑆, 𝛽, 𝛿, 𝑀) to (5) for 𝑆 defined in (21) with 𝑊0 = 𝑤 a.s. Fix
an arbitrary stopping time 𝜏 and let 𝜈 denote the distribution of 𝑊𝜏. Since the continuation
solution after any stopping time 𝜏 satisfies condition (ii) of Lemma H.1, that lemma implies
𝑊𝜏 ∈ E (𝑆𝜏) a.s. Because 𝜏 was arbitrary, this shows that E is self-generating. □

H.3 Proof of Proposition 4.9

Proof of Proposition 4.9. As in the proof of Proposition 6.8, B𝑦 (V∗
0 ) ⊆ V∗

0 and each sequence
(W𝑛

𝑦 )𝑛≥0 is decreasing in the set-inclusion sense with W𝑛
𝑦 ⊇ E (𝑦) because B is monotone.

It remains to show that W∞
𝑦 ⊆ B𝑦 (W∞) for each state 𝑦 so that W∞ is self-generating

and, hence, W∞
𝑦 = E (𝑦). Fix an arbitrary payoff 𝑤 ∈ W∞

𝑦 . Since 𝑤 ∈ W𝑛
𝑦 for each

𝑛, there exist enforceable solutions (𝑊𝑛, 𝑆𝑛, 𝐴𝑛, 𝛽𝑛, 𝛿𝑛, 𝑀𝑛) to (5) on some stochastic basis(
Ω𝑛,F𝑛,F𝑛, 𝑍𝑛, 𝑃𝑛, (𝐽𝑛,𝑦,𝑦′)(𝑦,𝑦′)∈Z

)
with𝑊𝑛 ∈ W𝑛

𝑦 a.e. on J0, 𝜏1)) and𝑊𝑛
𝜏1 ∈ W𝑛−1

𝑆𝜏1
a.s. We

will show that the solutions converge in law along a subsequence to a limit (𝑊, 𝑆, 𝐴, 𝛽, 𝛿, 𝑀)
that solves (5). We accomplish this by showing that the sequences of stochastic processes are
tight so that convergence follows from Prokhorov’s theorem.18

The first step to establish tightness is to show that the quadratic variation of these processes
is uniformly bounded. Because the optimality equation (9) is Lipschitz continuous, the
maximizer 𝛽∗(𝑤, 𝑁) is uniformly bounded on the compact set V∗

0 × 𝑆
1. It is thus sufficient to

show that we can choose public randomization 𝑀𝑛 with finite variation so that𝑊𝑛 remains on
the boundary of W𝑛

𝑦 . First, we can attain 𝑤 in the interior of W𝑛
𝑦 with public randomization

𝑀𝑛
0 at time 0 that takes values in 𝜕W𝑛

𝑦 . Once on the boundary, the continuation value can
enter the interior of W𝑛

𝑦 only at payoff pairs in K𝑦 (W𝑛−1) with strictly inward drift. Fix such
a payoff pair 𝑤0 and (𝛼0, 𝛿0) such that the drift rate points strictly towards the interior of

18See, for example, Theorem VI.3.5 in Jacod and Shiryaev (2002).
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W𝑛
𝑦 . The straight line through 𝑔(𝑦, 𝛼0) + 𝛿0𝜆(𝑦, 𝛼0) and 𝑤0 intersects 𝜕W𝑛

𝑦 at 𝑤0 and some
other payoff pair 𝑣. Let 𝐽𝑛 be a Poisson process orthogonal to 𝑍𝑛 and (𝐽𝑛,𝑦,𝑦′)(𝑦,𝑦′)∈Z with
instantaneous intensity 𝑟 ∥𝑤0 − 𝑔(𝑦, 𝛼0) − 𝛿0𝜆(𝑦, 𝛼0)∥/∥𝑣 − 𝑤0∥ and set

d𝑀̂𝑛
𝑡 = (𝑣 − 𝑤0) d𝐽𝑛𝑡 − 𝑟

(
𝑤0 − 𝑔(𝑦, 𝛼0) − 𝛿0𝜆(𝑦, 𝑎0)

)
d𝑡.

By construction, 𝑀̂𝑛 is a martingale and the solution to (5) with 𝐴 ≡ 𝛼0, 𝛽 ≡ 0, 𝛿 ≡ 𝛿0, and
𝑀̂𝑛 has zero drift. It remains at 𝑤0 until either a jump of 𝐽𝑛 occurs, at which point it jumps to
𝑣 ∈ 𝜕W𝑛

𝑦 , or a jump of 𝐽𝑛,𝑦,𝑦′ occurs, at which point the process jumps to W𝑛−1
𝑦′ . A countable

concatenation of this procedure yields a solution that remains on 𝜕W𝑛
𝑦 until 𝜏1. We deduce

that we can choose 𝑀𝑛 with finite variation and 𝛽𝑛 and such that max𝑦∥𝛽𝑛𝜎(𝑦)∥ ≤ 𝐾 for
some constant 𝐾 > 0.

The next step is to verify that (𝑊𝑛)𝑛≥0 is tight by verifying that the associated semi-
martingale characteristics satisfy the sufficient conditions of Theorem VI.5.17 in Jacod and
Shiryaev (2002). We verify those conditions for 𝑊̃𝑛 := (𝑒−𝑟𝑡𝑊𝑛

𝑡 )𝑡≥0 because its semimartin-
gale characteristics or more easily computed. Convergence of (𝑊̃𝑛)𝑛≥0 in law by Prokhorov’s
theorem then implies convergence in law of (𝑊𝑛)𝑛≥0. Since each 𝑊̃𝑛 is uniformly bounded
under 𝑄𝐴𝑛 , it is a so-called special semimartingale, admitting a unique decomposition 𝑊̃𝑛 =

𝑊𝑛
0 +𝐵

𝑛+ 𝑀̃𝑛 into a predictable process 𝐵𝑛 of finite variation and a𝑄𝐴𝑛-local martingale 𝑀̃𝑛.
The semimartingale characteristics of 𝑊̃𝑛 under 𝑄𝐴𝑛 is the triplet (𝐵𝑛, 𝐶𝑛, 𝜈𝑛), where 𝐶𝑛 is
the predictable quadratic variation of 𝑀̃𝑛 and 𝜈𝑛 is the compensated jump measure of 𝑊̃𝑛;
see Chapter II of Jacod and Shiryaev (2002) for a detailed introduction.19 It follows from (41)
that the first two characteristics of 𝑊̃𝑛 are given by

𝐵𝑛 = −
∫ ·

0
𝑟e−𝑟𝑡𝑔(𝑦, 𝐴𝑛𝑡 ) d𝑡, 𝐶𝑛,𝑖 𝑗 =

∫ ·

0
𝑟2e−2𝑟𝑡𝜎(𝑦)⊤𝛽𝑛,𝑖𝑡

⊤
𝛽
𝑛, 𝑗
𝑡 𝜎(𝑦) d𝑡.

Define the auxiliary processes 𝐺𝑛 := Var
(
𝐵𝑛,1

)
+Var

(
𝐵𝑛,2

)
+𝐶𝑛,11 +𝐶𝑛,22 for each 𝑛. Since

we chose 𝛽𝑛𝜎(𝑦) uniformly bounded by 𝐾 , it follows that each 𝐺𝑛 is majorized by20

𝐹 :=
∫ ·

0
𝑟e−𝑟𝑡 max

𝑦∈Y
max
𝑎∈A

��𝑔1(𝑦, 𝑎) + 𝑔2(𝑦, 𝑎)
�� d𝑡 + 2

∫ ·

0
𝑟2e−2𝑟𝑡𝐾2 d𝑡.

19Because each 𝑊̃𝑛 is bounded, we do not need to truncate its jumps to compute the semimartingale
characteristics. In the notation of Jacod and Shiryaev (2002), we can choose “truncation function” ℎ(𝑥) = 𝑥,
hence the second modified characteristic coincides with the second characteristic.

20A process 𝐹 majorizes 𝐺 if 𝐹 − 𝐺 is increasing.
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Aldous’ criterion implies that (𝐺𝑛)𝑛≥0 is tight; see Theorem VI.4.5 in Jacod and Shiryaev
(2002). Thus, the sequence (𝐺𝑛)𝑛≥0 converges in law along a subsequence to some limit
process 𝐺 by Prokhorov’s theorem. Since 𝐹 is deterministic, 𝐹 majorizes 𝐺. Together with
the fact that

(
𝑊̃𝑛

0
)
𝑛≥0 = (𝑀𝑛

0 )𝑛≥0 is tight because each 𝑀𝑛
0 takes values in the compact set V ,

this shows that
(
𝑊̃𝑛

)
𝑛≥0 is tight by virtue of Theorem VI.5.17 in Jacod and Shiryaev (2002).

With the same argument and majorizing process 𝐹, it follows that (𝐵𝑛)𝑛≥0 and
(
𝑀̃𝑛

)
𝑛≥0

are tight. Since the path space A[0,∞) of any 𝐴𝑛 is compact by Tychonov’s theorem, the
sequence (𝐴𝑛)𝑛≥0 is uniformly tight. By Prokhorov’s theorem, there exists a subsequence
(𝑛𝑘 )𝑘≥0, along which (𝑊̃𝑛)𝑛≥0, (𝐴𝑛)𝑛≥0, (𝐵𝑛)𝑛≥0, and (𝑀̃𝑛)𝑛≥0 all converge to limits 𝑊̃ , 𝐴,
𝐵, and 𝑀̃ , respectively. Convergence in law implies that −

∫ ·
0 𝑟e−𝑟𝑡𝑔(𝑦, 𝐴𝑡) d𝑡 = 𝐵̃. After

a suitable transformation with Girsanov’s theorem, the laws of (𝑍𝑛)𝑛≥0 and (𝐽𝑦,𝑦′,𝑛)𝑛≥0 are
constant, hence they converge trivially to a Brownian motion 𝑍 and Poisson processes 𝐽𝑦,𝑦′

along (𝑛𝑘 )𝑘≥0. By Proposition IX.1.1 in Jacod and Shiryaev (2002), the limit process 𝑀̃ of(
𝑀̃𝑛)𝑛≥0 is an (F, 𝑄𝐴)-martingale. Let 𝛽 and 𝛿 be defined by the martingale representation

of 𝑀̃ . By Theorem VI.6.26 in Jacod and Shiryaev (2002),
[
𝑀̃𝑛𝑘 , 𝑀̃𝑛𝑘

]
→

[
𝑀̃, 𝑀̃

]
in law,

showing that 𝛽𝑛𝑘 → 𝛽 and 𝛿𝑛𝑘 → 𝛿 in law as well.
Convergence in law implies that 𝑤 can be attained by an enforceable solution to (5) with

𝑊𝜏1 ∈ W𝑆𝜏1
a.s., where 𝑆 is defined from the limiting processes (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z as in (21).

Finally, similarly to the proof of Proposition 6.8, for each 𝑛, the solutions𝑊𝑚 remain inW𝑚
𝑦 ⊆

W𝑛
𝑦 a.e. on J0, 𝜏1)) for all𝑚 ≥ 𝑛. Convergence in law thus implies that on J0, 𝜏1)), we have𝑊 ∈

W𝑛
𝑦 for all 𝑛 and, hence,𝑊 ∈W∞

𝑦 . Thus, W∞
𝑦 ⊆ B𝑦 (W∞) by maximality of B𝑦 (W∞). □

I Characterization of B(W)

In this appendix we formalize the heuristic argument of Section 5.1. The first result generalizes
Lemma 5.4 shows how to construct enforceable solutions to the SDE (5) that locally remain
on a curve that that solve the optimality equations. It is a generalization of Lemma 5.4 in
the main text to concave Lipschitz expansions suitable for the perturbation argument. We
state the result for general measurable selectors 𝛼∗, 𝛽∗, and 𝛿∗ so that we can apply it to the
maximizers in either (8) or (9).

Lemma I.1. Fix a family W = (W𝑦)𝑦∈Y of compact and convex payoff sets with Lipschitz

expansion L of W as defined in Appendix F. Let C be a continuously differentiable curve

oriented by 𝑤 ↦→ 𝑁𝑤 and let 𝛼∗, 𝛽∗, 𝛿∗ be measurable selectors on C such that for any 𝑤 ∈ C:
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(i)
(
𝛽∗(𝑤), 𝛿∗(𝑤)

)
∈ Ξ𝑦,𝛼∗ (𝑤)

(
𝑤, 𝑁𝑤,L),

(ii) The curvature 𝜅𝑦 (𝑤) of C at 𝑤 satisfies

𝜅𝑦 (𝑤)


𝑇𝑤⊤𝛽∗(𝑤)𝜎(𝑦)

2

=
2
𝑟
𝑁𝑤

⊤(𝑔(𝑦, 𝛼∗(𝑤)) + 𝛿∗(𝑤)𝜆(𝑦, 𝛼∗(𝑤)) − 𝑤) .
(iii) If 𝛽∗(𝑤) = 0 for a segment of positive length, then𝑇𝑤⊤

(
𝑔(𝑦, 𝛼∗(𝑤))+𝛿∗(𝑤)𝜆(𝑦, 𝛼∗(𝑤))−

𝑤
)

is either non-positive or non-negative throughout the segment.

Then the solution (𝑊, 𝑆, 𝐴, 𝛽, 𝛿, 𝑀) to (5) with 𝑆0 = 𝑦, 𝐴 = 𝛼∗(𝑊−), 𝛽 = 𝛽∗(𝑊−), 𝛿 =

𝛿∗(𝑊−), and 𝑀 ≡ 0 remains on C until an end point of C is reached or a state change occurs.

Statement (iii) imposes that the direction of the drift does not change along solutions to
the state-transition optimality equation (9). If the direction of the drift changes at some payoff
pair 𝑤, then 𝑤 ∈ S̄𝑦 (W), hence 𝑤 ∈ B𝑦 (W) by Lemma 7.4 below.

Proof. Fix 𝑤 in the relative interior of C and choose 𝜂 > 0 small enough such that 𝑁𝑤⊤𝑁𝑣 > 0
for all 𝑣 ∈ C ∩ 𝐵𝜂 (𝑤), where 𝐵𝜂 (𝑤) denotes the closed ball around 𝑤 with radius 𝜂. On
𝐵𝜂 (𝑤), C admits a local parametrization 𝑓 in the direction 𝑁𝑤. For any 𝑣 ∈ 𝐵𝜂 (𝑤), define the
orthogonal projection 𝑣̂ = 𝑇𝑤⊤𝑣 onto the tangent, where 𝑇𝑤 is the vector obtained by rotating
𝑁𝑤 by 90◦ in clockwise direction and denote by 𝜋(𝑣) =

(
𝑣̂, 𝑓 (𝑣̂)

)
the projection of 𝑣 ∈ 𝐵𝜂 (𝑤)

onto C in the direction 𝑁𝑤. Let
(
𝑊, 𝐴, 𝛽, 𝛿, 𝑍, (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z , 𝑀

)
be a weak solution to (5)

starting at 𝑊0 = 𝑤 with 𝐴 = 𝑎∗
(
𝜋(𝑊−)

)
, 𝛽 = 𝛽∗

(
𝜋(𝑊−)

)
, 𝛿 = 𝛿∗

(
𝜋(𝑊−)

)
, and 𝑀 ≡ 0 on

J0, 𝜌)), where we set 𝜌 := 𝜏1 ∧ inf
{
𝑡 ≥ 0

�� 𝑊𝑡 ∉ 𝐵𝜂 (𝑤)
}
, where 𝜏1 is the first jump time of

any of the processes (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z . By (iii), such a solution exists. Since 𝜋 is measurable,
the processes 𝐴, 𝛽 and 𝛿 are all predictable.

We measure the distance of𝑊 to C by𝐷𝑡 = 𝑁𝑤
⊤𝑊𝑡− 𝑓

(
𝑊̂𝑡

)
. Note that 𝑓 is differentiable by

assumption and
(
− 𝑓 ′(𝑊̂𝑡), 1

)
= ℓ𝑡𝑁𝑡 , where ℓ𝑡 :=



(− 𝑓 ′(𝑊̂𝑡), 1
)

. Since 𝑓 is locally convex

it is second-order differentiable at almost every point by Alexandrov’s Theorem. In particular,
𝑓 ′ has Radon-Nikodým derivative 𝑓 ′′(𝑊̂𝑡) = −𝜅𝑦 (𝜋(𝑊𝑡))ℓ3

𝑡 . It follows from Itō’s formula that

d𝐷𝑡 = 𝑟ℓ𝑡𝑁𝑡
⊤(𝑊𝑡 − 𝑔(𝑦, 𝐴𝑡) − 𝛿𝑡𝜆(𝑦, 𝐴𝑡)

)
d𝑡 + 𝑟ℓ𝑡𝑁𝑡⊤𝛽𝑡

(
𝜎(𝑦) d𝑍𝑡 − 𝜇(𝑦, 𝐴𝑡) d𝑡

)
+ 𝑟ℓ𝑡

∑︁
(𝑦,𝑦′)∈Z

𝑁𝑡−
⊤𝛿𝑡 (𝑦′) d𝐽𝑦,𝑦

′

𝑡 − 1
2
𝑓 ′′(𝑊̂𝑡−) d

[
𝑊̂
]
𝑡
,

where we abbreviated 𝑁𝑡 = 𝑁𝜋(𝑊𝑡 ) and 𝑇𝑡 = 𝑇𝜋(𝑊𝑡 ) . Since 𝑁⊤𝛽 = 0, the volatility term
vanishes and we can write 𝛽 = 𝑇𝑇⊤𝛽. Before the first state transition, we have Δ𝐽𝑦,𝑦

′ ≡ 0 for
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𝑁 ′

𝑤

𝜕B𝑦 (W)

C
𝑣0

𝑊𝑡𝑊𝑡

𝜋̂(𝑊𝑡 )

𝑣 + 𝜂𝑁 ′𝑣 + 𝜂𝑁 ′

𝑣𝐿 𝑣𝑅

Figure 20: A solutionC to the optimality equation that “cuts through”B𝑦 (W). The proof of Lemma I.3
compares the law of motion of𝑊 attaining 𝑣+𝜂𝑁 ′ to the maximal incentives in the optimality equation
at its projection 𝜋̂(𝑊) onto C to deduce that𝑊 must escape B𝑦 (W) with positive probability.

any (𝑦, 𝑦′) ∈ Z , hence
[
𝑊̂
]
= ⟨𝑊̂⟩ = ⟨𝑇𝑤⊤𝑊⟩. Using (ii) and the fact that 𝑁𝑤⊤𝑁𝑡 = 𝑇𝑤⊤𝑇𝑡 =

ℓ−1
𝑡 , we obtain that on J0, 𝜌)),

d𝐷𝑡 = 𝑟ℓ𝑡𝑁𝑡
⊤(𝑊𝑡 − 𝑔(𝑦, 𝐴𝑡) − 𝛿𝑡𝜆(𝑦, 𝐴𝑡)

)
d𝑡 + 𝑟

2

2
𝜅𝑦
(
𝜋(𝑊𝑡)

)
ℓ3
𝑡

��𝑇𝑤⊤𝑇𝑡 ��2

𝑇𝑡⊤𝛽𝑡𝜎(𝑦)

2 d𝑡

= 𝑟𝐷𝑡 d𝑡,

where we used 𝑁𝑡⊤
(
𝑊𝑡 − 𝜋(𝑊𝑡)

)
= 𝑁𝑡

⊤𝑁𝑤𝐷𝑡 = ℓ
−1
𝑡 𝐷𝑡 in the second equality. It follows that

𝐷𝑡 = 𝐷0e𝑟𝑡 = 0 since 𝐷0 = 0. On {𝜌 < 𝜏1}, we can repeat this procedure and concatenate
the solutions as in the proof of Lemma H.2 to obtain a solution (𝑊, 𝑆, 𝐴, 𝛽, 𝛿, 𝑀) to (5) with
𝑊 ∈ C until time 𝜏1 ∧ 𝜉, where 𝜉 is the first time𝑊 reaches an end point of C. □

Proof of Lemma 5.4. This is a direct consequence of Lemma I.1 and Lemma 7.4 below. □

I.1 Incentives provided through the public signal

This appendix characterizes the boundary of B𝑦 (W) where incentives through the public
signal are used. To state the result efficiently, letNX := {(𝑤, 𝑁) | 𝑤 ∈ 𝜕X and 𝑁 ∈ N𝑤 (X )}
denote the normal bundle of a convex set X at some boundary point 𝑤 ∈ 𝜕X .

Lemma I.2. If (𝑤, 𝑁) ∈ NB𝑦 (W) \ Γ𝑦 (W), then 𝜕B𝑦 (W) is locally a smooth solution to (9).

The proof of Lemma I.2 proceeds by showing that solutions to (9) with initial conditions
(𝑤, 𝑁) ∈NB𝑦 (W) can neither escape nor fall into the interior of B𝑦 (W). We first show that a
solution cannot escape—otherwise the solution for slightly rotated initial conditions would
cut through B𝑦 (W) as in Figure 20; an impossibility by the following lemma.

Lemma I.3. Let 𝑤 ∈ 𝜕B(W) with outward normal 𝑁′. Let 𝜋 : 𝑈 → 𝜕B(W) be the

projection of a neighborhood 𝑈 of 𝑤 onto 𝜕B(W) in the direction of 𝑁′ and define the
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Lipschitz expansion L of W with ℎ(𝑣) = ∥𝜋(𝑣) − 𝑣∥1{𝑣∈intB𝑦 (W)}. Let C be a 𝐶1-solution

to (34), oriented by 𝑣 ↦→ 𝑁𝑣 with end points 𝑣𝐿 , 𝑣𝑅 ∈ 𝑈. It is impossible that the following

properties hold simultaneously:

(i) 𝑣𝐿 + 𝜀𝑁′ ∉ B𝑦 (W) and 𝑣𝑅 + 𝜀𝑁′ ∉ B𝑦 (W) for any 𝜀 > 0,

(ii) there exists 𝑣0 ∈ C such that 𝑣0 + 𝜂𝑁′ ∈ B𝑦 (W) for some 𝜂 > 0,

(iii) inf𝑣∈C 𝑁𝑣⊤𝑁′ > 0,

(iv) inf𝑣∈C
��𝑁 𝑖𝑣 �� > 0 for 𝑖 = 1, 2,

(v) NC ∩ Γ(L) = ∅.

Because the optimality equation maximizes the curvature over all restricted-enforceable
action profiles, any enforceable solution to (5) that attains a payoff pair in B𝑦 (W) “above the
curve” (in the shaded area of Figure 20) must stay above C with positive probability. Because
incentives through the public signal are necessary by (v), the continuation value has a positive
diffusion term and will escape on either side with positive probability.

Proof. The proof is lengthy but because the state 𝑦 is fixed, it is entirely analogous to the proof
of Lemma C.2 in Bernard (2024). The only additional observation required is that convexity
of B𝑦 (W) implies that ℎ is concave. Thus, local Lipschitz continuity of (34) follows from
Proposition F.9. □

Proof of Lemma I.2. Fix a family W of compact and convex payoff sets and a state 𝑦. Let
𝑤 be a corner of B𝑦 (W) and suppose towards a contradiction that (𝑤, 𝑁) ∉ Γ𝑦 (W) for
some non-extremal outward normal vector 𝑁 ∉ {±𝑒𝑖}. Since Γ𝑦 (W) is closed, (𝑤′, 𝑁′) ∉

Γ𝑦 (W) for (𝑤′, 𝑁′) sufficiently close to (𝑤, 𝑁). A solution to (34) with initial conditions
(𝑤 − 𝜀𝑁, 𝑁) for 𝜀 > 0 sufficiently small thus cuts through B𝑦 (W) and satisfies all properties
of Lemma I.3—an impossibility. Because Γ𝑦 (W) is closed, we deduce that (𝑤, 𝑁) ∈ Γ𝑦 (W)
for all outward normal vectors 𝑁 .

It follows that for any payoff-direction pair (𝑤, 𝑁𝑤) ∈ NB𝑦 (W) \ Γ𝑦 (W), there ex-
ists a sufficiently small neighborhood 𝑈 of 𝑤 such that 𝜕B𝑦 (W) is smooth in 𝑈 with
inf𝑣∈𝜕B𝑦 (W)∩𝑈 𝑁𝑣

⊤𝑁𝑤 > 0. Fix 𝑤0 ∈ 𝜕B𝑦 (W) ∩𝑈 and a neighborhood 𝑉 ⊆ 𝑈 of 𝑤0 such
that 𝑁𝑣 is bounded away from a coordinate direction for any 𝑣 ∈ 𝜕B𝑦 (W) ∩ 𝑉 . Let 𝜋 de-
note the projection of 𝑉 onto 𝜕B𝑦 (W) in the direction 𝑁𝑤0 , define Lipschitz expansion L as
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in Lemma I.3, and let C be a solution to (34). Because Γ𝑦 (W) is closed, there is a neigh-
borhood of (𝑤0, 𝑁𝑤0) that is not contained in Γ𝑦 (W) either, on which solutions to (34) are
continuous in initial conditions by Proposition F.9. Suppose towards a contradiction that C
escapes B𝑦 (W) within 𝑉 . Then the solution C′ to (34) for a slightly rotated initial condition
cuts through B𝑦 (W) as in Figure 20, satisfying all the conditions of Lemma I.3—an impos-
sibility. If C falls into the interior of B𝑦 (W), then the solution C′ to (34) for a slightly rotated
initial condition leaves and enters B𝑦 (W) as in the left panel of Figure 5. By Proposition F.9,
the maxima in (34) are taken over non-empty sets at any 𝑣 ∈ C′. Lemma I.1 implies that the
solution𝑊 to (5) with 𝐴, 𝛽, and 𝛿 given by the maximizers remains on C′ until an end point
of C′ is reached or a state transition occurs. By Lemma H.2, C′ ⊆ B𝑦 (W), a contradiction.
Since ℎ(𝑣) = 0 on the boundary, this shows that the boundary solves (9) on 𝑉 . □

I.2 Incentives provided through state transitions

In this appendix we show that the boundary of B𝑦 (W) is characterized by the state-transition
optimality equation within Γ𝑦 (W). Moreover, we establish that enforceable solutions to
SDE (5) that solve the state-transition optimality equation cannot escape B𝑦 (W). By
Lemma I.1, this can happen only where the direction of the drift changes. We begin with the
following auxiliary lemma.

Lemma I.4. Consider a payoff pair𝑤, action profiles𝛼1, . . . , 𝛼𝑚, incentives 𝛿𝑘 ∈ Ψ𝑦,𝛼𝑘 (𝑤,W)
for 𝑘 = 1, . . . , 𝑚, and weights 𝜂1, . . . , 𝜂𝑚 ≥ 0 that sum up to 1, and define

𝑢 :=
𝑚∑︁
𝑘=1

𝜂𝑘
(
𝑔(𝑦, 𝛼𝑘 ) + 𝛿𝑘𝜆(𝑦, 𝛼𝑘 )

)
. (44)

There exists an enforceable solution𝑊 to (5) with𝑊𝜏1 ∈ W𝑆𝜏1
such that:

(i) If 𝑤 = 𝑢, then𝑊 remains at 𝑤 until time 𝜏1. This implies 𝑤 ∈ B𝑦 (W).

(ii) If 𝑤 lies on a straight line between 𝑢 and some payoff pair 𝑣, then𝑊 remains at 𝑤 until

it either jumps to 𝑣 or a state transition occurs. If 𝑣 ∈ B𝑦 (W), this implies 𝑤 ∈ B𝑦 (W).

Proof. Suppose that there exist such payoff pairs 𝑤 and 𝑣, supports A(1)
⋄ , . . . ,A(𝑚)

⋄ , pairs
(𝛿𝑘 , 𝛼𝑘 ) in ΥA(𝑘 )

⋄
, and weights 𝜂𝑘 for 𝑘 = 1, . . . , 𝑚. Consider a solution (𝑊, 𝑆, 𝐴, 𝛽, 𝛿, 𝑀)

to (5) on a stochastic framework (Ω,F ,F, 𝑃, 𝑍, (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z ) with𝑊0 = 𝑤 such that:

(i) (Ω,F ,F, 𝑃) is rich enough to admit partitions Ξ𝑡 = (Ξ𝑘𝑡 )𝑘 of Ω with 𝑃(Ξ𝑘𝑡 ) = 𝜂𝑘

for each 𝑘 = 1, . . . , 𝑚 and each 𝑡 > 0 such that Ξ = (Ξ𝑡)𝑡≥0 is independent of 𝑍 ,
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(𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z and Ξ satisfies an exact law of large numbers; see Sun (2006),

(ii) Before the first jump time 𝜏1 of any of the processes (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z , we have

𝐴 =

𝑚∑︁
𝑘=1

𝛼𝑘1Ξ𝑘 , 𝛿 =

𝑚∑︁
𝑘=1

𝛿𝑘1Ξ𝑘 ,

𝛽 ≡ 0, and d𝑀𝑡 = (𝑣 − 𝑤) (d𝐽′𝑡 − 𝜆′ d𝑡), where 𝐽′ is a Poisson process independent of
(𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z with intensity 𝜆′ = ∥𝑢 − 𝑤∥/∥𝑣 − 𝑤∥.

It follows from an exact law of large numbers (see Proposition 2.5 in Sun (2006)) that

d𝑊𝑡 =
∑︁
𝑦∈𝑌

𝛿(𝑦) d𝐽𝑦𝑡 + (𝑣 − 𝑤) d𝐽′𝑡 .

Thus, 𝑊 stays at 𝑤 until either a jump in 𝐽′ or a state transition occurs. Moreover, (0, 𝛿)
enforces 𝐴 with 𝑊 + 𝑟𝛿(𝑦′) ∈ W𝑦′ for each 𝑦′ on J0, 𝜎)). Let 𝜏 denote the first jump time
of 𝐽′. On the event {𝜏 < 𝜏1}, the process𝑊 jumps from 𝑤 to 𝑣 ∈ B(W). Thus, Lemma H.2
shows 𝑤 ∈ B(W). □

We have shown that the state-transition optimality equation (8) has a solution outside
of int S̄𝑦 (W). It is a direct consequence of Lemma I.4 that all payoffs in S̄𝑦 (W) are contained
in B𝑦 (W), hence payoffs where (8) has no solution are in the interior of B𝑦 (W).

Proof of Lemma 7.4. Fix 𝑤 ∈ S̄𝑦 (W). Since 𝑤 ∈ D𝑦 (𝑤), it is a convex combination of 𝑤𝑘
decomposed by (𝛼𝑘 , 𝛿𝑘 ) with weights 𝜂𝑘 ≥ 0. By Lemma I.4, 𝑤 ∈ B𝑦 (W). □

The following lemma is the key ingredient to characterize the boundary within Γ𝑦 (W).

Lemma I.5. For any A⋄ ⊆ A(𝑦), any 𝑤 ∈ 𝜕B𝑦 (W) \ 𝜕K𝑦,A⋄ (W), and any outward normal

vector 𝑁 , there exists no (𝛼, 𝛿) ∈ ΥA⋄ (𝑤) with 𝑁⊤(𝑔(𝑦, 𝛼) + 𝛿𝜆(𝑦, 𝛼) − 𝑤) > 0.

Proof of Lemma I.5. Fix a state 𝑦, support A⋄ ⊆ A(𝑦), a payoff pair 𝑤 ∈ 𝜕B𝑦 (W) \
𝜕K𝑦,A⋄ (W), and an outward normal vector 𝑁 to B𝑦 (W) at 𝑤. Suppose towards a contradic-
tion that there exists (𝛼, 𝛿) ∈ ΥA⋄ (𝑤), for which 𝑁⊤(𝑔(𝑦, 𝛼) + 𝛿𝜆(𝑦, 𝛼) − 𝑤) > 0. In partic-
ular, such 𝑤 must lie in the interior of K𝑦,A⋄ (W). Because 𝑤 ↦→ ΥA⋄ (𝑤) is continuous by
Lemma F.8, for any 𝑤′ sufficiently close to 𝑤 there exist (𝛼′, 𝛿′) ∈ ΥA⋄ (𝑤′) sufficiently close
to (𝛼, 𝛿) such that 𝑁⊤(𝑔(𝑦, 𝛼′)+𝛿′𝜆(𝑦, 𝛼′)−𝑤′) > 0. In particular, there exists𝑤′ ∉ clB𝑦 (W)
close enough to 𝑤 such that the straight line segment through 𝑢 := 𝑔(𝑦, 𝛼′) + 𝛿′𝜆(𝑦, 𝛼′) and
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𝑤′ contains a point 𝑣 ∈ intB(W); see the left panel of Figure 5. Lemma I.4 implies that
𝑤′ ∈ B𝑦 (W), a contradiction. □

Lemma I.6. Fix any 𝑤 ∈ 𝜕B𝑦 (W) with (𝑤, 𝑁) ∈ Γ𝑦 (W) for some outward normal 𝑁 . Then

𝜕B𝑦 (W) is a continuously differentiable solution to (8) outside of S𝑦 (W) ∪K𝑦 (W).

Proof. Fix any 𝑤 ∈ 𝜕B𝑦 (W) \ K𝑦 (W) with outward normal vector 𝑁 such that (𝑤, 𝑁) ∈
Γ𝑦 (W). By definition of Γ𝑦 (W), there exists A⋄ and (𝛼, 𝛿) ∈ ΥA⋄ (𝑤) with 𝑁⊤(𝑔(𝑦, 𝑎) +
𝛿𝜆(𝑦, 𝑎) − 𝑤

)
≥ 0. By Lemma I.5, the inequality cannot be strict at 𝑤 ∉ K𝑦 (W), hence

(𝑤, 𝑁) solves (8).

Suppose now that there are multiple outward normal vectors to B𝑦 (W) at 𝑤. Then
Lemma I.2 implies that (𝑤, 𝑁) ∈ Γ𝑦 (W) for any outward normal𝑁 . Fix three distinct outward
normal vectors 𝑁1, 𝑁2, 𝑁3. Because A(𝑦) is finite, we can choose these vectors such that
(𝑤, 𝑁𝑘 ) ∈ Γ𝑦,A⋄ (W) for the same set A⋄ ⊆ A(𝑦). It follows from Lemma I.5 that for each 𝑘 ,

𝑁𝑘
⊤𝑤 = max

𝑥 ∈ convDA⋄ (𝑤)
𝑁𝑘

⊤𝑥𝑘 = max
𝑥∈DA⋄ (𝑤)

𝑁𝑘
⊤𝑥𝑘 .

However,𝑤 can be tangential to convDA⋄(𝑤) in three distinct directions only if𝑤 is an extreme
point of convDA⋄(𝑤), hence 𝑤 ∈DA⋄ (𝑤). By Lemma 6.2 this implies 𝑤 ∈ S𝑦 (W). □

It remains to show that the strategy profile that remains on a solution to (8) does not
escape B𝑦 (W) at corners.

Lemma I.7. Consider a compact and convex set X , whose boundary is a solution to (9)
outside of Γ𝑦 (W). Any non-stationary corner𝑤 ofX satisfies one of the following conditions:

(i) 𝑤 is attainable by a solution to SDE (5) described in Lemma I.4 for some 𝑣 ∈ 𝜕X .

(ii) 𝑤 is a starting point of a solution C to (8), i.e., the solution 𝑊 to SDE (5) for

maximizers 𝐴 and 𝛿 of the state-transition optimality equation (8) locally stays on C.

Proof. Fix a non-stationary corner 𝑤 of X . Lemma I.2 implies (𝑤, 𝑁) ∈ Γ𝑦 (W) for any
outward normal vector 𝑁 , which is equivalent to convD𝑦 (𝑤) ∩ 𝐶𝑤 ≠ ∅, where 𝐶𝑤 is the
normal cone to X at 𝑤. If 𝑤 ∈ convD𝑦 (𝑤), then condition (i) of Lemma I.4 is satisfied,
hence 𝑤 ∈ B𝑦 (W). Suppose, therefore, that convD𝑦 (𝑤) is strictly separated from 𝑤. If
there exists 𝑢 ∈ convD𝑦 (𝑤) ∩ int𝐶𝑤, then the straight line 𝐿 through 𝑤 and 𝑢 intersects the
interior of X . Let 𝑣 ≠ 𝑤 denote the other intersection point of 𝐿 with 𝜕X . Then 𝑤 and 𝑣
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satisfy condition (ii) of Lemma I.4. Finally, suppose that convD𝑦 (𝑤) intersects only 𝜕𝐶𝑤.
Then D𝑦 (𝑤) must intersect 𝜕𝐶𝑤, hence there exists an extremal normal vector such that (8)
holds. Moreover, 𝑤 must be a starting point of a solution to (8) because max𝑣∈D𝑦 (𝑤) 𝑁

⊤𝑣 ≥ 0
for all outward normal vectors 𝑁 . □

I.3 Proof of Theorem 7.5

Proof of Theorem 7.5. Fix a payoff set X that satisfies the conditions of Theorem 7.5 in
state 𝑦. We will show that 𝜕X is generated by W . Consider first a boundary payoff 𝑤, where
(𝑤, 𝑁𝑤) solves (8) and the direction of the drift changes. Then 𝑤 satisfies Condition (i) of
Lemma I.4, hence 𝑤 ∈ B𝑦 (W). Any stationary corner of X lies in B𝑦 (W) by Lemma 7.4.
Lemma I.7 implies that any other corner is either a starting point of (8) or it satisfies one of the
the conditions of Lemma I.4 for some 𝑣 ∈ 𝜕X . If 𝑤 satisfies Condition (i), then 𝑤 ∈ B𝑦 (W)
by Lemma I.4. If Condition (ii) is satisfied instead, then an enforceable solution to (5) locally
remains on the boundary of 𝜕X . Together with Lemma I.1 it follows that every boundary
payoff can be attained locally by a restricted-enforceable solution to (5) that remains on the
boundary, hence clX ⊆ B𝑦 (W).

Next, Lemmas I.2, I.6, and I.7 show that the boundary of B𝑦 (W) satisfies the conditions
of Theorem 7.5. This implies that clB𝑦 (W) ⊆ B𝑦 (W), hence B𝑦 (W) is closed. Finally,
B𝑦 (W) ⊆ V∗

𝑦 (W) by Corollary D.2 and S𝑦 (W) ⊆ B𝑦 (W) by Lemma 7.4. □
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