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Appendices D and E contain supplementary information. Appendix F establishes

regularity of the optimality equations in Propositions 7.3 and F.9. Appendix G contains

the proofs that characterize S𝑦 (W) and K𝑦 (W) under our various assumptions. Proofs

that only require minor adaptations from Bernard (2024) are deferred to Appendices H

and I in the supplemental information file found online.13

D Computation

D.1 Individually rational payoffs

Theorem 7.5 characterizesB𝑦 (W) as the largestW-feasible set that satisfies certain properties.
We can sharpen the upper bound by additionally imposing individual rationality.

Definition D.1. Fix a family W = (W𝑦)𝑦∈Y of payoff sets.

(i) Let 𝑤𝑖
𝑦′ denote player 𝑖’s lowest payoff inW𝑦′ . Player 𝑖’sW-minmax payoff in state 𝑦 is

𝑣𝑖
𝑦
(W) := min

𝛼−𝑖∈ΔA−𝑖 (𝑦)
max

𝑎𝑖∈A𝑖 (𝑦)
𝑔𝑖 (𝑦, 𝑎𝑖, 𝛼−𝑖)+ 1

𝑟

∑︁
𝑦′∈Y

(𝑤𝑖
𝑦′−𝑣

𝑖
𝑦
(W))𝜆𝑦,𝑦′ (𝑎𝑖, 𝛼−𝑖). (28)

(ii) Any payoff pair 𝑤 with 𝑤𝑖 ≥ 𝑣𝑖
𝑦
(W) for 𝑖 = 1, 2 is W-individually rational in state 𝑦.

We denote by V∗
𝑦 (𝑟;W) or V∗

𝑦 (W) the set of all W-individually rational payoffs in
V𝑦 (𝑟;W). We denote by 𝑣𝑖

𝑝,𝑦
(W) the pure-action W-minmax payoff in state 𝑦 and by

V 𝑝∗
𝑦 (W) the set of all pure-action W-individually rational payoffs in V𝑦 (𝑟;W).

Any restricted-enforceable solution to (5) must be W-individually rational as, otherwise,
one player can profitably deviate to the strategy of myopic best responses. This gives rise to
the following corollary to Lemma 5.2.

Corollary D.2. B𝑦 (W) ⊆ V∗
𝑦 (W) and B𝑝

𝑦 (W) ⊆ V 𝑝∗
𝑦 (W).

∗Department of Economics, University of Wisconsin–Madison, bbernard3@wisc.edu.
13See here: https://benjamin-bernard.com/research/stochastic-games_SI.pdf.
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In a related discrete-time model where the public signal becomes perfectly informative as
the length of the time period shrinks to 0, Pęski and Wiseman (2015) show that W-feasibility
and W-individual rationality are the only constraints imposed on B𝑦 (W) in the limit. Our
Theorem 7.5 shows that this is not true away from the limit.

D.2 Starting with a tighter bound

For any non-singleton communicating class, the computation time through Proposition 4.9 can
be reduced by starting with a tighter upper bound. Call a family of payoff sets W self-feasible

and self-individually rational if it isW-feasible andW-individually rational, respectively.

(i) Call the largest family of self-feasible payoffs the feasible payoffs V (𝑟) = (V𝑦 (𝑟))𝑦∈Y .

(ii) Call the largest family of self-feasible and self-individually rational payoffs the family
V∗(𝑟) = (V∗

𝑦 (𝑟))𝑦∈Y of feasible and individually rational payoffs.

Since E (𝑟) is self-feasible and self-individually rational, it follows that E (𝑟; 𝑦) ⊆ V∗
𝑦 (𝑟).

Consequently, the algorithms in Propositions 6.8 and 4.9 can be started with V∗(𝑟).

There are various equivalent characterizations of V∗(𝑟). If the number of pure actions in
each state is low, it is convenient to compute V𝑦 (𝑟) as the convex hull of all stationary pure-
strategy payoffs; see Blackwell (1965). Then V∗

𝑦 (𝑟) is the set of all 𝑤 ∈ V𝑦 (𝑟) that satisfy
𝑤𝑖 ≥ 𝑣𝑖

𝑦
(𝑟) for 𝑖 = 1, 2, where the family (𝑣𝑖

𝑦
(𝑟))𝑦∈Y of minmax payoffs solves the system

𝑣𝑖
𝑦
(𝑟) = min

𝑎−𝑖∈A−𝑖 (𝑦)
max

𝛼𝑖∈Δ(A𝑖 (𝑦))
𝑔(𝑦, 𝑎) +

∑︁
𝑦′∈Y

𝑣𝑖
𝑦′ (𝑟) − 𝑣𝑖𝑦 (𝑟)

𝑟
𝜆𝑦,𝑦′ (𝑎𝑖, 𝛼−𝑖).

If the number of pure actions is large, V∗(𝑟) can be computed by iteratively applying the
operator V∗ defined in Appendix D.1 to (V∗

0 , . . . ,V
∗
0 ) until it converges to V∗(𝑟).

D.3 Implementing the local inclusion in Section 6.2

The first step to computing S𝑦,A⋄ (W) through Lemma 6.3 is to find an extremal stationary
payoff𝑤0, from which we can solve the local inclusion. We can do this in one of two ways:

(i) If we are interested in S𝑦,A⋄ (W) for the sake of characterizing B𝑦 (W), then we simply
solve the optimality equations until we find a stationary payoff pair, and such a stationary
payoff pair must be extremal. If we find none, there are no extremal stationary payoffs.

(ii) In general, we start by finding some stationary payoff. We can either computeDA⋄ (𝑤𝑛)
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for some grid of payoff pairs (𝑤𝑛)𝑛≥0 and see if one of them is stationary,14 or we can
compute S𝑦,A⋄ (𝛼𝑛,W) defined in Footnote 7 for a grid (𝛼𝑛)𝑛≥0 of mixed action profiles
supported on A⋄. Once we find some stationary payoff 𝑤̂, Lemma 6.2 implies 𝑤̂ + 𝑡𝑁
for an arbitrary direction 𝑁 will lie in 𝜕DA⋄ (𝑤̂ + 𝑡𝑁) for some 𝑡 sufficiently large.

From an extremal stationary payoff 𝑤0, we can solve the local inclusion as follows. Let 𝜃0

denote an angle such that 𝑤0 + 𝜀𝑁 (𝜃0) ∉ S𝑦,A⋄ (W) for any 𝜀 > 0 and fix a step size Δ𝑤 > 0.
Let𝑇 (𝜃) denote the counterclockwise 90◦ rotation of 𝑁 (𝜃). Let 𝜃𝑘+1 denote the smallest angle
𝜃 ≥ 𝜃𝑘 − 𝜋/2 such that 𝑤𝑘 + Δ𝑤𝑇 (𝜃) ∈ 𝜕DA⋄ (𝑤𝑘 + Δ𝑤𝑇 (𝜃)) and set 𝑤𝑘+1 = 𝑤𝑘 + Δ𝑤𝑇 (𝜃).
Since S𝑦,A⋄ (W) may not be convex, 𝜃𝑘+1 may be smaller than 𝜃𝑘 , but it has to be at least
𝜃𝑘 −𝜋/2 since 𝑤𝑘 is known to be extremal in direction 𝑁 (𝜃𝑘 ). If the conditions of Lemma 6.4
are satisfied and S𝑦,A⋄ (W) is known to be simply connected, the found solution is the entire
boundary. If S𝑦,A⋄ (W) is not known to be simply connected, we repeat the entire process by
trying to find stationary payoffs in other connected components with approach (i) or (ii).

E Boundary segments in K𝑝
𝑦 (W) of positive length

This section provides an example where 𝜕E 𝑝 (𝑦) contains segments of positive length in
K𝑦 (E 𝑝), along which the drift of any PPE points towards the interior of E 𝑝 (𝑦). Moreover, the
example shows that the PPE payoff correspondence is not monotone in either 𝜆 or 𝑟 if the other
is held fixed. Consider a two-state absorbing game with initial state 𝑦1, absorbing state 𝑦2,
discount rate 𝑟 = 1, 𝜇(𝑦, 𝑎) ≡ 0, as well as flow payoffs and intensity of state transitions given
in Figure 14. Since the public signal is completely uninformative, enforceable action profiles
must maximize each player’s flow payoff over all unilateral deviations that leave the transition
intensity unchanged. As a result, 𝑎𝐴 = (𝐴, 𝐴) is the only enforceable action profile 𝑎 with
𝜆𝑦1,𝑦2 (𝑎) = 0 and 𝑎𝐶 = (𝐶,𝐶) is the only enforceable action profile 𝑎 with 𝜆𝑦1,𝑦2 (𝑎) = 2. It
is easy to check that 𝑎𝐵 = (𝐵, 𝐵) is enforced by 𝛿 ∈ [−1, 1]2. In particular, only the static
Nash profiles are enforceable in either state; see Figure 14.

The PPE payoff correspondence is shown in Figure 15. Since 𝑦2 is absorbing and players
receive no information, E (𝑦2) is simply the convex hull of static Nash payoffs. In particular,
player 2’s continuation value after a state transition to 𝑦2 is at least 𝑤2

𝑦2
= 3. Because player 2

also earns an expected flow payoff of 3 in state 𝑦1 if 𝑎𝐴 or 𝑎𝐶 are played, it follows that 𝑎𝐵 must
14Because of statement (iii) of Lemma 6.2, if 𝑤𝑘 ∉ DA⋄ (𝑤𝑘), it is most efficient to choose 𝑤𝑘+1 in the

direction of DA⋄ (𝑤𝑘). If DA⋄ (𝑤𝑘) becomes empty before 𝑤𝑘 reaches DA⋄ (𝑤𝑘), then S𝑦,A⋄ (W) may be empty.
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Figure 14: The Nash equilibria (circled) are the only enforceable action profiles.

be played in any PPE that delivers a payoff below 3 to player 2. Since 𝛿2 ≤ 1 is required to en-
force 𝑎𝐵, player 2 must receive at least 2 in any PPE—otherwise no promise from E (𝑦2) would
enforce 𝑎𝐵. Because 𝑔2(𝑦1, 𝑎𝐵)+𝛿2𝜆(𝑦1, 𝑎𝐵) ≤ 1 for any such 𝛿, it follows that the drift points
strictly towards the interior of E (𝑦1) at the lower boundary of E (𝑦1). Even though there is
slack left from the inward-drift condition, 𝑎𝐵 cannot be credibly enforced outside ofK𝑦1,𝑎𝐵 (E)
because continuation values from E (𝑦2) are too rewarding to play of 𝑎𝐵. If the reward
exceeds 1, player 2 prefers to deviate to 𝐶 to increase the frequency of state transitions.

Payoff pair 𝑤0 on the lower boundary can be attained, for example, by a restricted-
enforceable solution 𝑊 to (5) with 𝐴 = 𝑎𝐵, 𝛿 = 𝛿𝑤0 (𝑦2) := (𝑤0 − 𝑔(𝑦1, 𝑎𝐵))/2, and 𝛽 =

𝑀 = 0 until convS (E) is reached; see Figure 15. In this example, the straight line segments
between 𝑤𝐿 and 𝑔(𝑦1, 𝑎𝐴) and between 𝑤𝑅 and 𝑔(𝑦1, 𝑎𝐶) are straight solutions to (8).

Player 2’s payoff is bounded away from their minmax payoff 𝑣2
𝑝,𝑦1

= 5/3, attained at
minmax profile (𝐵,𝐶), found by solving (28) for 𝑤2

𝑦2
= 3. We observe that E (𝑦1) is bounded

away from the set of feasible and individually rational payoffs for a different reason than in
Figure 1—not because value has to be burnt to incentivize 𝑎𝐵, and not because players are
impatient. The reason is specific to stochastic games and arises when there is a large payoff
difference between states: a larger difference between V𝑦 (W) and continuation values in W𝑦′

implies that state transitions have a larger impact on incentives relative to the flow payoffs.
Consequently, the set of enforceable action profiles in state 𝑦 shrinks with this difference and
action profiles that attain extremal feasible payoffs may not be enforceable.

This issue is not mitigated but amplified by greater patience because a larger weight is
attached to the continuation value after a state transition. Here, K𝑦1,𝑎𝐵 (E (𝑟)) shrinks linearly
with 𝑟, hence there are extremal PPE payoffs with strict inward drift for any 𝑟 ∈ (0, 1].

This game shows that the PPE payoff correspondence is not monotone in 𝑟 or𝜆 individually.
Note that E (𝑦2) is independent of 𝑟 and E (𝑦1) converges to E (𝑦2) as the entire payoff weight
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Figure 15: An absorbing game with strictly inward-pointing drift at 𝜕E (𝑦1).

is shifted to 𝑦2 in the limit as 𝑟 → 0.15 While the upper frontier of E (𝑦1) expands as 𝑟 → 0,
the lower frontier contracts. Similarly, an increase in the frequency of state transitions by
a factor 𝜂 > 1 attaches a larger weight to the absorbing state 𝑦2. Expected continuation
promises remain the same if the delivered promises 𝛿 are divided by 𝜂. Correspondingly,
K𝑦1,𝑎𝐵 (E) shrinks proportionally to 1/𝜂, i.e., the lower bound of E (𝑦1) rises with 𝜂.

F Regularity of the optimality equations

To show local Lipschitz continuity of the optimality equations, we show that both are a maxi-
mization of a locally Lipschitz continuous function over a locally Lipschitz continuous set of
actions and incentives. For set-valued maps, Lipschitz continuity is defined as follows.

Definition F.1. A set-valued map 𝐺 : 𝑥 ↦→ 𝐺 (𝑥) ⊆ R𝑛 is said to be Lipschitz continuous if
there exists a constant 𝐾 such that 𝐺 (𝑥) ⊆ 𝐺 (𝑥) + 𝐾 ∥𝑥 − 𝑥∥𝐵1(0) for any 𝑥 and 𝑥, where
𝐵1(0) denotes the closed unit ball in R𝑛 centered at the origin and + is the setwise addition.

Lemma F.2. Let 𝑓 (𝑥, 𝑦) be a function and let 𝐺 (𝑥) be a set-valued map, both (locally)

Lipschitz-continuous. Then ℎ(𝑥) = max𝑦∈𝐺 (𝑥) 𝑓 (𝑥, 𝑦) is (locally) Lipschitz continuous.

Because the enforceability constraints define a closed convex polyhedron by Lemma 5.5
and W-feasibility is a closed convex set, we begin with four preliminary lemmas about
continuity properties of the intersection of such sets.

Lemma F.3. Let 𝐹 and 𝐺 be closed- and convex-valued maps that are locally Lipschitz

continuous at 𝑥0 ∈ dom 𝐹 ∩ dom𝐺 such that one of them is locally bounded at 𝑥0. If

𝐹 (𝑥0) ∩ int𝐺 (𝑥0) ≠ ∅, then 𝐹 ∩ 𝐺 is locally Lipschitz continuous at 𝑥0.
15Relevant for the convergence is that at all extremal payoff pairs of except 𝑔(𝑦1, 𝑎𝐴), action profiles 𝑎𝐵 or

𝑎𝐶 are played, for which state transitions happen with positive frequency.

5



The proofs of Lemmas F.2 and F.3 have appeared in Bernard (2024).

Lemma F.4. Fix a matrix 𝐴 ∈ R𝑚×𝑛, a concave function 𝑓 : R𝑑 → R𝑚, and a compact and

convex set 𝐺 ⊆ R𝑛. For any 𝑥 ∈ R𝑑 , let 𝐹 (𝑥) ⊆ R𝑛 be the set of all 𝑧 ∈ R𝑛 that satisfy

𝐴𝑧 ≤ 𝑓 (𝑥). (29)

Then 𝐹 ∩ 𝐺 is locally Lipschitz continuous on the interior of D = {𝑥 | 𝐹 (𝑥) ∩ 𝐺 ≠ ∅}.

Proof. We begin with the following two observations.

Claim 1. For any 𝑥0, 𝑥1 ∈ D, any 𝑧𝑘 ∈ 𝐹 (𝑥𝑘 ) ∩ 𝐺 for 𝑘 = 0, 1, and any 𝜂 ∈ (0, 1), define

𝑥𝜂 := 𝜂𝑥1 + (1 − 𝜂)𝑥0, 𝑧𝜂 := 𝜂𝑧1 + (1 − 𝜂)𝑧0. (30)

Then 𝑧𝜂 ∈ 𝐹 (𝑥𝜂) ∩𝐺, hence the domain D and the image I =
⋃
𝑥∈D 𝐹 (𝑥) ∩𝐺 are both convex.

To show convexity ofD, start with 𝑥0, 𝑥1 ∈ D and 𝜂 ∈ (0, 1) and define 𝑥𝜂 and 𝑧𝜂 according
to (30) for arbitrary 𝑧𝑘 ∈ 𝐹 (𝑥𝑘 ) ∩ 𝐺. For convexity of I, start with 𝑧0, 𝑧1 ∈

⋃
𝑥∈D 𝐹 (𝑥) ∩ 𝐺

and define 𝑧𝜂 and 𝑥𝜂 according to (30) for arbitrary 𝑥𝑘 with 𝑧𝑘 ∈ 𝐹 (𝑥𝑘 ) ∩ 𝐺. In either case,

𝐴𝑧𝜂 = 𝜂𝐴𝑧1 + (1 − 𝜂)𝐴𝑧0 ≤ 𝜂 𝑓 (𝑥0) + (1 − 𝜂) 𝑓 (𝑥1) ≤ 𝑓 (𝑥𝜂),

by concavity of 𝑓 , hence 𝑧𝜂 ∈ 𝐹 (𝑥𝜂). Since𝐺 is convex, it follows that 𝑧𝜂 ∈ 𝐺, hence 𝑥𝜂 ∈ D.

Claim 2. If there exists 𝑥 ∈ D with 𝐹 (𝑥) ∩ int𝐺 ≠ ∅, then 𝐹 ∩𝐺 is locally Lipschitz on intD.

Observe first that 𝑓 is locally Lipschitz continuous because it is concave, hence 𝐹 is
locally Lipschitz continuous; see Hoffman (1952). Fix such 𝑥0 and 𝑧0 ∈ 𝐹 (𝑥0) ∩ int𝐺 and an
arbitrary point 𝑥 ∈ intD. Since D is convex by Claim 1, we can write 𝑥 = 𝜂𝑥1 + (1− 𝜂)𝑥0 for
some other 𝑥1 ∈ D and 𝜂 ∈ (0, 1). For any 𝑧1 ∈ 𝐹 (𝑥1) ∩𝐺, the vector 𝑧𝜂 defined as above lies
in 𝑧𝜂 ∈ 𝐹 (𝑥) ∩ int𝐺. Thus, Lemma F.3 shows that 𝐹 ∩𝐺 is locally Lipschitz continuous at 𝑥.

The proof is concluded by rewriting 𝐹 and 𝐺 such that Claim 2 applies. Let 𝐻 be the
(possibly empty) intersection of all hyperplanes that contain I. If𝐻 = R𝑛, set𝐺′ = 𝐺. If𝐻 is
lower-dimensional, let 𝐺′ denote the pre-image of all vectors 𝑧 whose orthogonal projection
onto 𝐻 lies in I. In either case, 𝐺 = 𝐻 ∩𝐺′ where𝐺′ is full-dimensional and convex since I
is convex by Claim 1. Thus, there exist 𝑥0 ∈ D and 𝑧0 ∈ 𝐹 (𝑥0) such that 𝑧0 lies in the relative
interior of I, i.e., 𝑧0 ∈ int𝐺′. Because 𝐹 (𝑥) ∩ 𝐻 is characterized by (29) with concave 𝑓 ,
Claim 2 shows that 𝐹 (𝑥) ∩ 𝐻 ∩𝐺′ = 𝐹 (𝑥) ∩𝐺 is locally Lipschitz continuous on intD. □
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𝑧0𝐺

Figure 16: Illustration that 𝐹 (𝑥0) ∩ 𝐺 ⊆ R2 is lower hemicontinuous.

Lemma F.5. Let 𝐺 ⊆ R2 be a compact and convex set. Let 𝐹 (𝑥) ⊆ R2 be the (possibly

unbounded) rectangle of all 𝑧 ∈ R2 that satisfy a subset of the constraints 𝑓 𝑖
ℓ
(𝑥) ≤ 𝑧𝑖 and

𝑧𝑖 ≤ 𝑓 𝑖
ℎ
(𝑥) for 𝑖 = 1, 2, where each 𝑓 𝑖

ℓ
, 𝑓 𝑖
ℎ

: R𝑑 → R is locally Lipschitz continuous. Then:

(i) 𝐹 ∩ 𝐺 is continuous on its effective domain D = {𝑥 | 𝐹 (𝑥) ∩ 𝐺 ≠ ∅}.

(ii) If 𝑓 𝑖
𝑘

is either constant or strictly monotone in any 𝑥 𝑗 for any 𝑗 = 1, . . . , 𝑑, any 𝑖 = 1, 2,

and any 𝑘 ∈ {ℓ, ℎ}, then 𝐹 ∩ 𝐺 is locally Lipschitz continuous in the interior of D.

The requirement that 𝐺 is two-dimensional is crucial, since the analogue of neither
statement is true in three dimensions without additional impositions on the convex set 𝐺.

Proof. 𝐹 (𝑥) is locally Lipschitz continuous by Hoffman (1952). The closed graph theorem
implies that 𝐹 ∩𝐺 is upper hemicontinuous. It follows from Lemma F.3 that 𝐹 ∩𝐺 is locally
Lipschitz continuous at 𝑥 if 𝐹 (𝑥) ∩ int𝐺 ≠ ∅. It remains to show the continuity properties of
𝐹 ∩ 𝐺 at 𝑥0 ∈ D where 𝐹 (𝑥0) intersects 𝐺 only at the boundary. Since 𝐹 (𝑥0) is a rectangle,
the intersection with 𝐺 is either a single point or a segment parallel to a coordinate axis.

Suppose first that the intersection is a single point {𝑧0} such that no coordinate direction
is an outward normal to 𝐺 at 𝑧0. Then 𝑧0 is a corner of 𝐹 (𝑥0) and, without loss of generality,
suppose that 𝑧0 = 𝑓ℓ (𝑥0) as in the left panel of Figure 16. Moreover, the parametrization
𝑔 of 𝜕𝐺 in a neighborhood of 𝑧0 with respect to coordinate 2 has non-zero and finite
derivative 𝑔′(𝑧1

0). Fix a small neighborhood𝑈 of 𝑥0 and let 𝐾𝑖 be the local Lipschitz constants
of 𝑓 𝑖

ℓ
on𝑈. For any 𝑥 ∈ 𝑈, the intersection 𝐹 (𝑥) ∩ 𝐺 must be contained in the right triangle

indicated in the left panel of Figure 16. Its legs are of length

𝐿1(𝑥) = 𝐾1∥𝑥 − 𝑥0∥ + 𝐾2∥𝑥 − 𝑥0∥
1��𝑔′(𝑧1

0)
�� , 𝐿2(𝑥) = 𝐾2∥𝑥 − 𝑥0∥ + 𝐾1∥𝑥 − 𝑥0∥|𝑔′(𝑧1

0) |.

Thus, 𝐹 ∩ 𝐺 is locally Lipschitz continuous, hence also lower hemicontinuous. for 𝑥 ∈ 𝑈
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Suppose next that the intersection 𝐹 (𝑥0) ∩𝐺 maximizes or minimizes 𝐺 in a coordinate
direction. Without loss of generality, suppose that all 𝑧 ∈ 𝐹 (𝑥0) ∩𝐺 satisfy 𝑧1 = 𝑓 1

ℓ
(𝑥0) and

𝐺 contains no vector 𝑧with 𝑧1 > 𝑓 1
ℓ
(𝑥0) as in the right panel of Figure 16. We first show lower

hemicontinuity. Consider 𝑧0 in the relative interior of 𝐹 (𝑥0) ∩ 𝐺, which must satisfy 𝑧2
0 ∈

( 𝑓 2
ℓ
(𝑥0), 𝑓 2

ℎ
(𝑥0)). Since 𝐹 (𝑥0) intersects𝐺 only if 𝑓 1

ℓ
(𝑥) ≤ 𝑓 1

ℓ
(𝑥0), it follows that 𝑧0 ∈ 𝐹 (𝑥)∩

𝐺 for any 𝑥 sufficiently close to 𝑥0 by continuity of 𝑓 2
ℓ

and 𝑓 2
ℎ
. Suppose next that 𝑧0 maximizes

or minimizes 𝑧2 among 𝑧 ∈ 𝐹 (𝑥0)∩𝐺. Since𝐺 is convex, local parametrizations of the upper
and lower boundary are continuous. Thus, 𝑧0 is approximated by any 𝑧𝑛 ∈ 𝐹 (𝑥𝑛) ∩𝐺 on the
upper or lower frontier of 𝐹 (𝑥𝑛) ∩𝐺, respectively, for any sequence (𝑥𝑛)𝑛≥1 ⊆ D converging
to 𝑥0. Finally, we show local Lipschitz continuity at such 𝑥0 ∈ intD when each 𝑓 𝑖

ℓ
and 𝑓 𝑖

ℎ
is

either constant or strictly monotone. Consider still the setting in the right panel of Figure 16
where 𝑓 1

ℓ
(𝑥0) binds. If 𝑓 1

ℓ
is strictly monotone in some 𝑥 𝑗 , then here exists 𝑥 arbitrarily close to

𝑥0 such that 𝐹 (𝑥) does not intersect𝐺, contradicting 𝑥0 ∈ intD. Thus, 𝑓 1
ℓ
(𝑥) must be constant

in 𝑥. Then 𝐹 ∩ 𝐺 is entirely contained in the vertical line segment
{
𝑧 ∈ R2

�� 𝑧1 = 𝑓 1
ℓ
(𝑥)

}
,

hence the intersection changes locally Lipschitz continuously in 𝑓 2
ℓ

and 𝑓 2
ℎ
. □

Lemma F.6. Let 𝐺1, . . . , 𝐺𝑛 ⊆ R2 be compact and convex sets and set 𝐺 = 𝐺1 × . . . × 𝐺𝑛.

Fix a matrix 𝐴 ∈ R𝑚×2𝑛 such that each row 𝐴𝑘 has non-zero entries only in either odd- or

even-numbered columns, and an affine function 𝑓 : R𝑑 → R𝑚. For any 𝑥 ∈ R𝑑 , let 𝐹 (𝑥) ⊆
R2𝑛 be the closed convex polyhedron of all 𝑧 ∈ R2𝑛 that satisfy 𝐴𝑧 ≤ 𝑓 (𝑥). Then 𝐹 ∩ 𝐺 is

continuous on D = {𝑥 | 𝐹 (𝑥) ∩ 𝐺 ≠ ∅} and locally Lipschitz continuous on intD.

Proof. Local Lipschitz continuity follows straight from Lemma F.4. Since 𝐹 ∩ 𝐺 is upper
hemicontinuous on D by the closed graph theorem, it remains to show lower hemicontinuity
of 𝐹 ∩ 𝐺 at any 𝑥0 ∈ 𝜕D. Note again we may assume without loss of generality that each
𝐺𝑘 has non-empty interior as we could otherwise incorporate their constraints directly into
𝐹. Let 𝜋𝑘 (𝑧) denote the projection of 𝑧 onto the components corresponding to set 𝐺𝑘 .

Claim 3. For any 𝑥0 ∈ 𝜕D, there exists a non-empty set 𝐾 ⊆ {1, . . . , 𝑛} of indices such that
𝜋𝑘 (𝐹 (𝑥0) ∩ 𝐺) ⊆ 𝜕𝐺𝑘 for all 𝑘 ∈ 𝐾.

Fix 𝑥0 ∈ D such that for each 𝑘 , there exists 𝑧𝑘 ∈ 𝐹 (𝑥0) ∩ 𝐺 with 𝜋𝑘 (𝑧𝑘 ) ∈ int𝐺𝑘 . Let 𝑧∗
denote any strict convex combination of all 𝑧1, . . . , 𝑧𝑛, which lies in 𝐹 (𝑥0) ∩𝐺 by convexity.
Moreover, since 𝜋𝑘 (𝑧 𝑗 ) ∈ 𝐺𝑘 for each 𝑗 , we must have 𝜋𝑘 (𝑧∗) ∈ int𝐺𝑘 for all 𝑘 . This implies
𝑧∗ ∈ 𝐹 (𝑥0) ∩ int𝐺, hence 𝐹 (𝑥) ∩ 𝐺 ≠ ∅ for all 𝑥 sufficiently close to 𝑥0, hence 𝑥0 intD.
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Fix arbitrary 𝑥0 ∈ extD, approximated by a sequence (𝑥𝑛)𝑛≥1 ⊆ extD. By Claim 3, for
each 𝑛 there exists a set of indices 𝐾𝑛 such that 𝜋𝑘 (𝐹 (𝑥𝑛) ∩𝐺) ⊆ 𝜕𝐺𝑘 for all 𝑘 ∈ 𝐾𝑛. Let us
further decompose𝐾𝑛 into the disjoint union of indices𝐾𝑛𝑠 and𝐾𝑛

ℓ
, where𝐾𝑛𝑠 are those indices

𝑘 ∈ 𝐾𝑛 where 𝜋𝑘 (𝐹 (𝑥0) ∩ 𝐺) is a singleton
{
𝑧∗
𝑘

}
and 𝐾𝑛

ℓ
is the set of those indices 𝑘 ∈ 𝐾𝑛,

where 𝜋𝑘 (𝐹 (𝑥0) ∩ 𝐺) is a line segment 𝐿𝑘 of positive length. By passing to a subsequence,
we may assume that those are the same set of indices 𝐾𝑛𝑠 = 𝐾𝑠 and 𝐾𝑛

ℓ
= 𝐾ℓ for each 𝑛.

The basic idea behind the proof is that the conditions on 𝐴 imply that 𝜋𝑘 (𝐹 (𝑥0)) is a
rectangle that moves around 𝐺𝑘 . For each 𝑘 ∈ 𝐾 = 𝐾𝑠 ∪ 𝐾ℓ, we use a construction as in
Lemma F.5, and indices 𝑘 ∉ 𝐾 are not binding. We formalize this as follows. For 𝑘 ∈ 𝐾ℓ, let
𝑃𝑘 denote a closed inner polygon approximation of 𝐺𝑘 that contains 𝐿𝑘 and set

𝑃𝐿 =
>
𝑘∈𝐾ℓ

𝑃𝑘 ×
>
𝑘∉𝐾ℓ

R2, 𝐺𝑆 =
>
𝑘∈𝐾𝑠

𝐺𝑘 ×
>
𝑘∉𝐾𝑠

R2, 𝐺 𝐼 =
>
𝑘∉𝐾

𝐺𝑘 ×
>
𝑘∈𝐾

R2,

as well as 𝑃 = 𝑃𝐿∩𝐺 𝐼∩𝐺𝑆. We first show that the effective domain of 𝐹∩𝑃 locally coincides
with the effective domain of 𝐹 ∩ 𝐺 even though 𝑃 is potentially strictly smaller than 𝐺.

Claim 4. 𝐹 (𝑥) ∩ 𝑃 ≠ ∅ for any 𝑥 ∈ D in a neighborhood of 𝑥0.

Fix 𝑘 ∈ 𝐾ℓ and a vector 𝑧0 ∈ 𝐹 (𝑥) ∩ 𝐺 such that 𝐿𝑘 contains segments of length 𝜀 > 0
on both sides of 𝜋𝑘 (𝑧0). Because 𝐹 is locally Lipschitz continuous, there exists a small
neighborhood𝑈𝑘 of 𝑥0 so that the Hausdorff distance of 𝐹 (𝑥) and 𝐹 (𝑥0) is at most 𝜀 for any
𝑥 ∈ 𝑈𝑘 . Let 𝑁𝑘 be an outward normal vector to 𝐺𝑘 at 𝐿𝑘 . Because 𝐺 has a product structure,
the vector 𝑁 with 𝜋𝑘 (𝑁) = 𝑁𝑘 and 𝜋 𝑗 (𝑁) = 0 for 𝑗 ≠ 𝑘 is the normal vector of a separating
hyperplane 𝐻 of 𝐹 (𝑥0) and 𝐺. In particular, 𝐹 (𝑥) intersects 𝐺 in a small neighborhood
𝑈′
𝑘

only if 𝐹 (𝑥) also intersects 𝐻. Since 𝜋𝑘 (𝐻 ∩ 𝐺) = 𝐿𝑘 , it follows that 𝐹 (𝑥) intersects
𝐿𝑘 ×𝐺−𝑘 ⊆ 𝑃𝑘 ×𝐺−𝑘 for any 𝑥 ∈ D ∩𝑈𝑘 ∩𝑈′

𝑘
. Thus, the claim holds on the neighborhood⋂

𝑘∈𝐾ℓ
𝑈𝑘 ∩𝑈′

𝑘
of 𝑥0.

To show lower hemicontinuity, fix an open set 𝑉 that intersects 𝐹 (𝑥0) ∩ 𝐺 = 𝐹 (𝑥0) ∩ 𝑃.
By definition, any 𝑧0 ∈ 𝐹 (𝑥0) ∩ 𝑃 ∩𝑉 must satisfy 𝜋𝑘 (𝑧0) = 𝑧𝑘∗ for 𝑘 ∈ 𝐾𝑠. Moreover, since
𝑉 is open, 𝐹 (𝑥0) ∩ 𝑃 ∩𝑉 must contain 𝑧0 in the interior of 𝐺 𝐼 . Fix 𝑧0 ∈ int𝐺 𝐼 ∩𝑉 .

Claim 5. For any 𝑥 ∈ D and any 𝑘 ∈ 𝐾𝑠, the projection 𝜋𝑘 (𝐹 (𝑥) ∩ 𝑃𝐿) is a rectangle.

Odd columns of 𝐴 impose restrictions on the first dimension of each 𝐺𝑘 , whereas even
columns of 𝐴 impose restrictions on the second dimension of each 𝐺𝑘 . The condition on 𝐴
imposes that these restrictions do not interact, and 𝑃𝐿 is orthogonal to 𝐺𝑘 .
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Claim 5 implies that 𝜋𝑘 (𝐹 (𝑥𝑛) ∩𝑃) is a rectangle that moves tangentially around𝐺𝑘 as in
Lemma F.5 with a singleton intersection 𝜋𝑘 (𝐹 (𝑥𝑛)∩𝑃)∩𝐺𝑘 =

{
𝑧
(𝑘)
𝑛

}
. It follows as in the proof

of Lemma F.5 that 𝑧(𝑘)𝑛 → 𝜋𝑘 (𝑧0). Let now 𝑧𝑛 denote the orthogonal projection of 𝑧0 onto

𝑍𝑛 := 𝐹 (𝑥𝑛) ∩ 𝑃𝐿 ∩
>
𝑘∈𝐾𝑠

{
𝑧
(𝑘)
𝑛

}
× >
𝑘∉𝐾𝑠

R2.

We know that 𝑍𝑛 is non-empty because 𝐹 (𝑥𝑛) ∩ 𝑃 ≠ ∅ for 𝑛 sufficiently large by Claim 4 and
each 𝑧 ∈ 𝐹 (𝑥𝑛)∩𝑃 satisfies 𝜋𝑘 (𝑧) = 𝑧(𝑘)𝑛 . By construction, 𝑧𝑛 → 𝑧0 and, since 𝑧0 ∈ int𝐺 𝐼∩𝑉 ,
we have 𝑧𝑛 ∈ 𝐹 (𝑥𝑛) ∩ 𝑃 ⊆ 𝐹 (𝑥𝑛) ∩ 𝐺 for large enough 𝑛. In particular, 𝐹 (𝑥𝑛) ∩ 𝐺 ∩𝑉 ≠ ∅.

For an arbitrary sequence (𝑥𝑛)𝑛≥1 ⊆ D approaching 𝑥0, we can write each 𝑥𝑛 = 𝜂𝑛𝑦𝑛 +
(1 − 𝜂𝑛)𝑥0 as a convex combination of 𝑦𝑛 ∈ extD and 𝑥0 since D is convex by Claim 1. If
(𝑦𝑛)𝑛≥1 converges to 𝑥0, we construct 𝑧𝑛 ∈ 𝐹 (𝑦𝑛) ∩ 𝐺 that converges to 𝑧0 as above. Then
𝑧′𝑛 := 𝜂𝑛𝑧𝑛 + (1 − 𝜂)𝑧0 converges to 𝑧0 as well and it must lie in 𝐹 (𝑥𝑛) ∩ 𝐺 by Claim 1. If
(𝑦𝑛)𝑛≥1 does not converge to 𝑥0, then 𝜂𝑛 has to converge to 0. Thus, 𝑧′𝑛 := 𝜂𝑛𝑧𝑛 + (1 − 𝜂)𝑧0

converges to 𝑧0 for arbitrary 𝑧𝑛 ∈ 𝐹 (𝑦𝑛) ∩ 𝐺. □

F.1 Regularity of the state-transition optimality equation

In this appendix we prove Proposition 7.3 based on the preliminary results established in the
previous subsection. It will be useful to introduce some additional notation.

⋄ Let Ψ𝑖

𝑦,A𝑖
⋄
(𝛼−𝑖) and Ψ𝑖

𝑦,A⋄
denote the projections of Ψ𝑦,A⋄ (𝛼) and Ψ𝑦,A⋄ onto 𝛿𝑖.

⋄ Let Υ𝑖
𝑦,A⋄

denote the set of all (𝛼−𝑖, 𝛿𝑖) that satisfy (10) for player 𝑖, all 𝑎𝑖 ∈ A𝑖
⋄, and

all 𝑎̃𝑖 ≠ 𝑎𝑖. Let Υ𝑦,A⋄ = Υ1
𝑦,A⋄

×Υ2
𝑦,A⋄

.

Moreover, when Assumption 2.(ii) is satisfied, let 𝑦𝑠 denote the unique successor state of 𝑦 so
that 𝛿𝜆(𝑦, 𝑎) = 𝛿(𝑦𝑠)𝜆𝑦,𝑦𝑠 (𝑎). Label actionsA𝑖 (𝑦) = {0, 1} so that𝜆𝑦,𝑦𝑠 (1, 𝑎−𝑖) ≥ 𝜆𝑦,𝑦𝑠 (0, 𝑎−𝑖)
for any 𝑎−𝑖 and each player 𝑖. We say 𝜆 is strictly monotone for player 𝑖 if the inequality is strict.
In that case, there is a unique 𝛿𝑖∗(𝛼−𝑖, 𝑦𝑠) that incentivizes player 𝑖 to mix against 𝛼−𝑖, i.e.,

𝑔𝑖 (𝑦, 1, 𝛼−𝑖) + 𝛿𝑖∗(𝛼−𝑖, 𝑦𝑠)𝜆𝑦,𝑦𝑠 (1, 𝛼−𝑖) = 𝑔𝑖 (𝑦, 0, 𝛼−𝑖) + 𝛿𝑖∗(𝛼−𝑖, 𝑦𝑠)𝜆𝑦,𝑦𝑠 (0, 𝛼−𝑖). (31)

Lemma F.7. Suppose that Assumption 2.(ii) holds with strictly monotone 𝜆. Then:

(i) 𝛿𝑖∗(𝛼−𝑖) is either constant in 𝛼−𝑖 or strictly monotone in 𝛼−𝑖 with bounded derivative.

(ii) 𝑔𝑖 (𝑦, 𝛼) + 𝛿𝑖∗(𝛼)𝜆(𝑦, 𝛼) depends on 𝛼 only through 𝛼−𝑖.

(iii) Ψ𝑖
𝑦,{1} (𝛼

−𝑖) =
{
𝛿𝑖

�� 𝛿𝑖 (𝑦𝑠) ≥ 𝛿∗(𝛼−𝑖, 𝑦𝑠)} andΨ𝑖
𝑦,{0} (𝛼

−𝑖) =
{
𝛿𝑖

�� 𝛿𝑖 (𝑦𝑠) ≤ 𝛿∗(𝛼−𝑖, 𝑦𝑠)}.
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Proof. Equation (31) implies that 𝛿𝑖∗(𝛼−𝑖) is a ratio of two affine functions, where the
denominator is different from 0 for any 𝛼−𝑖 by the monotonicity condition. It is easy to check
that any such function satisfies statement (i). Player 𝑖 is indifferent between both actions
for 𝛿𝑖∗(𝛼−𝑖), hence any mixture 𝛼𝑖 attains the same value 𝑔𝑖 (𝑦, 𝛼) + 𝛿𝑖∗(𝛼)𝜆(𝑦, 𝛼), showing
statement (ii). Finally, since 𝜆𝑦,𝑦𝑠 (1, 𝛼−𝑖) > 𝜆𝑦,𝑦𝑠 (0, 𝛼−𝑖), it follows that player 𝑖 is willing to
play action 1 whenever 𝛿1 ≥ 𝛿1

∗ (𝛼−𝑖) and action 0 whenever 𝛿1 ≤ 𝛿1
∗ (𝛼−𝑖). □

Lemma F.8. Fix 𝑦, A⋄ ⊆ A(𝑦), and a family W of compact and convex payoff sets. Let

Υ𝑖
A⋄

(𝑤) denote the set of all (𝛼, 𝛿) with supp(𝛼) ⊆ A⋄ that satisfy (10) for player 𝑖 and all 𝑎𝑖 ∈
A𝑖

⋄ withW-feasible 𝛿. Suppose that eitherA⋄ is a singleton or Assumption 2 is satisfied. Then:

(i) ΥA⋄ (𝑤) is continuous on K𝑦,A⋄ (W) and locally Lipschitz continuous on its interior.

(ii) Υ𝑖
A⋄

(𝑤) is continuous on its domain and locally Lipschitz continuous in its interior.

Proof. We prove both statements simultaneously because their proofs are virtually the same.
It will be convenient to abbreviate by ΔA⋄ := ΔA1

⋄ × ΔA2
⋄ the set of mixed action profiles 𝛼

with supp(𝛼) ⊆ A⋄. Let Λ𝑖𝑦 (𝑎𝑖, 𝛼−𝑖) and 𝐺𝑖𝑦 (𝑎𝑖, 𝛼−𝑖) denote the linear extensions of Λ𝑖𝑦 (𝑎)
and 𝐺𝑖𝑦 (𝑎) in Section 7.1. Then Ψ𝑖

A𝑖
⋄
(𝛼−𝑖) is the set of all 𝛿𝑖 that satisfy 𝐺𝑖𝑦 (𝑎𝑖, 𝛼−𝑖) +

𝛿𝑖Λ𝑖𝑦 (𝑎𝑖, 𝛼−𝑖) ≤ 0 for all 𝑎𝑖 ∈ A𝑖
⋄. To show local Lipschitz continuity, it will be convenient to

reparametrize the space of incentives via 𝛿 = ℎ(𝑤) + 𝑟𝛿, where ℎ(𝑤) ∈ R2×|Y | is the matrix
containing 𝑤 in each column. Let ℎ𝑖 (𝑤) = (𝑤𝑖, . . . , 𝑤𝑖) denote row 𝑖 of ℎ(𝑤). Denote by
Z 𝑖 (𝑤) the set of all (𝛼, 𝛿) that satisfy

𝑟𝐺𝑖𝑦 (𝑎𝑖, 𝛼−𝑖) + 𝛿𝑖Λ𝑖𝑦 (𝑎𝑖, 𝛼−𝑖) ≤ ℎ𝑖 (𝑤)Λ𝑖𝑦 (𝑎𝑖, 𝛼−𝑖) (32)

for each 𝑎𝑖 ∈ A⋄, and denote by Z (𝑤) denote the set of all (𝛼, 𝛿) that satisfy (32) for each
𝑎𝑖 ∈ A𝑖

⋄ and both players 𝑖 = 1, 2. Set Υ̃A⋄ (𝑤) := Z (𝑤) ∩ΔA⋄ ×
>

𝑦′ W𝑦′ and define Υ̃𝑖
A⋄

(𝑤)
analogously. Observe that (𝛼, 𝛿) ∈ ΥA⋄ (𝑤) if and only if (𝛼, ℎ(𝑤) + 𝑟𝛿) ∈ Υ̃A⋄ (𝑤). In
particular, the effective domains of Υ̃A⋄ and ΥA⋄ coincide and any continuity properties we
establish for Υ̃A⋄ also hold for ΥA⋄ .

Suppose first that eitherA⋄ is a singleton or Assumption 2.(i) is satisfied. ThenΛ𝑖𝑦 (𝑎𝑖, 𝛼−𝑖)
is independent of 𝛼−𝑖, hence Z 𝑖 (𝑤) and Z (𝑤) are polyhedral sets with affine right-hand side.
Thus, Lemma F.4 shows that their intersection with the compact and convex setΔA⋄×

>
𝑦′ W𝑦′

is locally Lipschitz continuous on the interior of their domain. Let 𝐹𝑖 (𝑤) and 𝐹 (𝑤) denote
the projections of Z 𝑖 (𝑤) and Z (𝑤), respectively, onto dimensions corresponding to 𝛿. Since
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𝐹𝑖 (𝑤) and 𝐹 (𝑤) are polyhedra that satisfy the conditions of Lemma F.6, their intersection
with

>
𝑦′ W𝑦′ is continuous by Lemma F.6. Note that the 𝛿-sections Z (𝑤 | 𝛿) of Z (𝑤) are

continuous in 𝛿 because they are polyhedra with a fixed orientation of hyperfaces. Therefore,

Υ̃A⋄ (𝑤) =
{
(𝛼, 𝛿)

�� 𝛿 ∈ 𝐹 (𝑤) ∩>
𝑦′ W𝑦′ , 𝛼 ∈ Z (𝑤 | 𝛿)

}
is continuous on K𝑦,A⋄ (W). An analogous argument shows that Υ̃𝑖 (𝑤) is continuous.

Suppose next that Assumption 2.(ii) holds. We may assume without loss of generality
that 𝜆 is strictly monotone as, otherwise, Assumption 2.(i) holds. It follows from Lemma F.7
that Z 𝑖 (𝑤) is the set of all (𝛼, 𝛿) such that 𝛿𝑖 (𝑦𝑠) is either equal to or bounded on one side
by 𝑤 + 𝑟𝛿𝑖∗(𝛼−𝑖, 𝑦𝑠). Because 𝛿𝑖∗ is monotone in 𝛼−𝑖 by Lemma F.7, it follows that 𝐹𝑖 (𝑤) is
the set of all 𝛿 such that 𝛿𝑖 (𝑦𝑠) is either equal to or bounded on one side by 𝑤 + 𝑟𝛿𝑖∗(𝑎−𝑖, 𝑦𝑠)
for some pure action 𝑎−𝑖. The projection 𝐹𝑖𝑦𝑠 (𝑤) of 𝐹𝑖 (𝑤) onto 𝛿(𝑦𝑠) is thus a half-space
with a locally Lipschitz continuous bound. Lemma F.5 shows that 𝐹𝑦𝑠 (𝑤) ∩W𝑦𝑠 is locally
Lipschitz continuous on the interior of the domain and continuous on the entire domain.
Therefore, so is 𝐹𝑖 (𝑤)∩>𝑦′ W𝑦′ = 𝐹

𝑖
𝑦𝑠
(𝑤)∩W𝑦𝑠

>
𝑦′≠𝑦𝑠 W𝑦′ . Because 𝛿𝑖∗(𝛼−𝑖) is monotone

with bounded derivative by Lemma F.7, the 𝛿-sections Z 𝑖 (𝑤 | 𝛿) of Z 𝑖 (𝑤) are Lipschitz
continuous. Therefore, Υ̃𝑖 (𝑤) is locally Lipschitz continuous on the interior of the domain
and continuous on the entire domain. Note that 𝐹 (𝑤) = 𝐹1(𝑤) ∩𝐹2(𝑤), hence its projection
𝐹𝑦𝑠 (𝑤) onto 𝛿(𝑦𝑠) are possibly unbounded rectangles such that all finite bounds are given by
𝑤 + 𝑟𝛿𝑖∗(𝑎−𝑖, 𝑦𝑠) for some pure action 𝑎−𝑖. The remainder of the argument is the same. □

Proof of Lemma 7.1. This is simply Statement (i) of Lemma F.8. □

Proof of Proposition 7.3. For any 𝑤 ∈ K̄𝑦 (W) \ S̄𝑦 (W), the set D𝑦 (𝑤) is non-empty and
bounded away from 𝑤 since D𝑦 (𝑤) is closed. In particular, there are two tangents to D𝑦 (𝑤)
through 𝑤 and two solutions to (8). Outside of K𝑦 (W) the map D𝑦 is continuous, hence
D𝑦 (𝑣) is bounded away from 𝑣 close to 𝑤. Because D𝑦 is uniformly bounded, the direction
of the tangent 𝑇𝑤 changes continuously in 𝑤, i.e., oriented solutions to (8) are continuously
differentiable. Local Lipschitz continuity of (8) follows from Lemmas 7.1 and F.2. Unique-
ness and continuity in initial conditions then follows from the Picard-Lindelöf theorem. □

F.2 Regularity of the optimality equation

In the optimality equation (9), the maximum is taken over all enforceable action profiles.
However, none of our assumptions imply that all action profiles are enforceable. Let Venf

𝑦 (W)
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denote the set of all payoff pairs that can be decomposed into (𝛼, 𝛿) for an enforceable action
profile 𝛼 and W-feasible 𝛿. Note that the requirement is not that 𝛿 from the decomposition
enforces 𝛼, but that there exists some (𝛽, 𝛿′) that enforce 𝛼. Define further

𝑣enf,𝑖
𝑦

(W) := min
𝛼,𝛽,𝛿

𝑔𝑖 (𝑦, 𝛼) + 𝛿𝑖𝜆(𝑦, 𝛼), 𝑣̄enf,𝑖
𝑦 (W) := max

𝛼,𝛽,𝛿
𝑔𝑖 (𝑦, 𝛼) + 𝛿𝑖𝜆(𝑦, 𝛼), (33)

where the minimum and maximum are taken over all enforceable 𝛼 and all (𝛽, 𝛿) that enforce
𝛼 with W-feasible 𝛿 and 𝛽𝑖 = 0. Assumption 1.(ii.c) guarantees that the minimization and
maximization in (33) are taken over non-empty sets. If the W-minmax profile against player 𝑖
is enforceable, then 𝑣enf,𝑖

𝑦
is player 𝑖’s minmax payoff. Similarly, if the action profile that

decomposes player 𝑖’s highest W-feasible payoff is enforceable, then 𝑣̄enf∗,𝑖
𝑦 (W) coincides

with that payoff. Let Venf∗
𝑦 (W) denote the set of all 𝑤 ∈ Venf

𝑦 (W) with 𝑣enf,𝑖
𝑦

(W) ≤ 𝑤𝑖 ≤
𝑣̄

enf,𝑖
𝑦 (W). It follows exactly as in the proof of Lemma 5.2 that any enforceable strategy profile

must attain values in Venf∗
𝑦 (W). The main result of this appendix is the following.

Proposition F.9. Suppose that Assumption 1 holds and that players are either restricted to

pure strategies or Assumption 2 holds. Then for any 𝑤 ∈ Venf∗
𝑦 (W) and any 𝑁 ∈ 𝑆1, there

exists an action profile 𝛼 such that Ξ𝑦,𝛼 (𝑤, 𝑁,W) is non-empty. Moreover,

𝜅𝑦 (𝑤, 𝑁) := max
𝛼

max
(𝛽,𝛿)∈Ξ𝑦,𝛼 (𝑤,𝑁,W)

2𝑁⊤(𝑔(𝑦, 𝛼) + 𝛿𝜆(𝑦, 𝛼) − 𝑤)
𝑟 ∥𝑇⊤𝛽𝜎(𝑦)∥2 (34)

is locally Lipschitz continuous for (𝑤, 𝑁) within (intVenf∗
𝑦 (W) × 𝑆1) \ Γ𝑦 (W). In particular,

solutions to (34) are continuously differentiable and continuous in initial conditions.

Remark F.1. The sufficient conditions in Lemma 4.5 imply that every action profile is en-
forceable, hence under these conditions Venf∗

𝑦 (W) = V∗
𝑦 (W).

We will break down the proof into several smaller results. Specifically, we will distinguish
whether 𝑁 is parallel to a coordinate axis, a so-called coordinate direction, or not. We
do this for two reasons. First, no incentives can be provided to player 𝑖 through tangential
transfers when 𝑁 = ±𝑒𝑖, hence local Lipschitz continuity requires a separate argument for
coordinate directions. Second, and more importantly, the characterization of 𝜕B𝑦 (W) relies
on the perturbation argument described in Section 5.1. For the perturbation argument, we
must allow continuation values after a transition to state 𝑦′ to come from a set that is slightly
larger than W𝑦′ . Since a perturbation argument for non-coordinate directions is sufficient, it
is helpful to state regularity for coordinate and non-coordinate directions separately.
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Specifically, for a family W = (W𝑦)𝑦∈Y of compact sets, call a family L = (L𝑦)𝑦∈Y of
set-valued maps L𝑦 : R2 ⇒ R2×|Y | a Lipschitz expansion of W if

L𝑦 (𝑤) =
{
𝛿 ∈ R2×|Y |

���� min
𝑤𝑦′∈W𝑦′



𝑤 + 𝑟𝛿(𝑦′) − 𝑤𝑦′


 ≤ ℎ(𝑤) for all 𝑦′ ∈ Y

}
for a non-negative Lipschitz-continuous function ℎ : R2 → R. A Lipschitz expansion is
concave if ℎ is concave. For ℎ ≡ 0 this simply corresponds to W-feasibility. Throughout the
entire appendix, we keep the family W , the Lipschitz expansion L, and 𝑦 fixed.

First, it will be helpful to reduce the number of variables in the maximization problem (9)
by rewriting the optimal tangential transfers as a function of (𝛼, 𝛿, 𝑁). Let us again condition
on the support A⋄ of the players’ mixture as follows. For any A⋄ ⊆ A(𝑦), denote by

Φ𝑦,A⋄ (𝛼, 𝛿, 𝑁) =
{
𝜙 ∈ R1×𝑑 (𝑦) �� (𝑇𝜙, 𝛿) incentivizes each 𝑎𝑖 ∈ A𝑖

⋄ against 𝛼−𝑖 for 𝑖 = 1, 2
}

the set of all tangential transfers that make each player 𝑖 indifferent among all actions 𝑎𝑖 ∈ A𝑖
⋄

against 𝛼−𝑖, given 𝛿, where 𝑇 is the clockwise orthogonal direction to 𝑁 . Denote by

Υ𝑦,A⋄ (𝑤, 𝑁,L) :=
{
(𝛼, 𝛿) ∈ ΔA1

⋄ × ΔA2
⋄ × L(𝑤)

�� Φ𝑦,A⋄ (𝛼, 𝛿, 𝑁) ≠ ∅
}

its effective domain. For any (𝛼, 𝛿) ∈ Υ𝑦,A⋄ (𝑤, 𝑁,L), the optimal tangential transfers
𝜙𝑦,A⋄ (𝛼, 𝑤, 𝑁) is the vector 𝜙 ∈ Φ𝑦,A⋄ (𝛼, 𝛿, 𝑁) that minimizes ∥𝜙𝜎(𝑦)∥.

Lemma F.10. Suppose that Assumption 1.(ii) is satisfied. For any A⋄ ⊆ A(𝑦):

(i) 𝜙𝑦,A⋄ is locally Lipschitz continuous in (𝛼, 𝛿) ∈ Υ𝑦,A⋄ (𝑤, 𝑁,L) and non-coordinate 𝑁 .

(ii) If 𝛿𝑖 provides sufficient incentives for player 𝑖 to play any 𝑎𝑖 ∈ A𝑖
⋄ against 𝛼−𝑖, then

𝜙𝑦 (𝛼, 𝛿, 𝑁) is locally Lipschitz continuous in 𝑁 at (𝛼, 𝛿,±𝑒𝑖).

(iii) ∥𝜙𝑦,supp(𝛼) (𝛼, 𝛿, 𝑁)∥ ≤


𝜙𝑦,A⋄ (𝛼, 𝛿, 𝑁)



 for any 𝑁 and any (𝛼, 𝛿) ∈ Υ𝑦,A⋄ (𝑤, 𝑁,L).

Proof. Note that Φ𝑦,A⋄ (𝛼, 𝛿, 𝑁) is the set of all 𝜙 that satisfy for 𝑖 = 1, 2 and all 𝑎𝑖 ∈ A𝑖
⋄,

𝜙𝑀 𝑖
𝑦 (𝑎𝑖, 𝛼−𝑖) ≤ − 1

𝑇 𝑖

(
𝐺𝑖𝑦 (𝑎𝑖, 𝛼−𝑖) + 𝛿𝑖Λ𝑖𝑦 (𝑎𝑖, 𝛼−𝑖)

)
(35)

As in Footnote 12, Assumption 1.(ii) implies that 𝑀 𝑖
𝑦 (𝑎𝑖, 𝛼−𝑖) does not depend on 𝛼−𝑖. There-

fore, Φ𝑦,A⋄ (𝛼, 𝛿, 𝑁) is a polyhedron with fixed orientation and “locally Lipschitz continuous
right-hand side” for 𝑁 ≠ ±𝑒𝑖. Thus, statement (i) follows from Theorem 2.2 in Yen (1995).16

16In the notation of Yen’s paper, Theorem 2.2 is applied to 𝑐 = 0 and 𝐷 = 𝜎(𝑦)𝜎(𝑦)⊤, where 𝐷 is positive
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For the second statement, let Φ𝑖
𝑦,A⋄

(𝛼, 𝛿) denote the set of all row vectors 𝜙 in R𝑑 (𝑦) that
satisfy (35) for all 𝑎𝑖 ∈A⋄ with 𝑇 𝑖 = 1. Let 𝜙𝑖

𝑦,A⋄
(𝛼, 𝛿) denote the vector 𝜙𝑖 ∈ Φ𝑖

𝑦,A⋄
(𝛼, 𝛿) that

minimizes


𝜙𝑖𝜎(𝑦)

. If (0, 𝛿𝑖) satisfies the enforceability constraint of player 𝑖, then the prod-

uct structure implies that 𝜙𝑦,A⋄(𝛼, 𝛿, 𝑁) = 𝜙−𝑖𝑦,A⋄
(𝛼, 𝛿)/𝑇−𝑖. It follows again from Theorem 2.2

in Yen (1995) that 𝜙−𝑖
𝑦,A⋄

is Lipschitz continuous, hence so is 𝜙𝑦,A⋄ (𝛼, 𝛿, 𝑁) for 𝑁 ≠ ±𝑒−𝑖.
The last statement follows because indifference among supp(𝛼𝑖) is potentially weaker than

indifference among all A𝑖
⋄, hence 𝜙𝑦,supp(𝛼) is the minimum over a larger set than 𝜙𝑦,A⋄ is. □

To substitute 𝜙𝑦,A⋄ into the optimality equation, we must ensure that it is different from 0.
Incentives from the public signal are not needed to enforce mixtures on A⋄ on the set

Γ𝑦,A⋄ (L) =
{
(𝑤, 𝑁)

�� there exist (𝛼, 𝛿) ∈ Υ𝑦,A⋄ (𝑤, 𝑁,L) with 0 ∈ Φ𝑦,A⋄ (𝛼, 𝛿, 𝑁)
}
.

Outside of Γ𝑦,A⋄ (L), we can rewrite the optimality equation for support A⋄ as

𝜅𝑦,L,A⋄ (𝑤, 𝑁) := max
(𝛼,𝛿)∈Υ𝑦,A⋄ (𝑤,𝑁,L)

2𝑁⊤(𝑔(𝑦, 𝛼) + 𝛿𝜆(𝑦, 𝛼) − 𝑤)
𝑟


𝜙𝑦,A⋄ (𝛼, 𝛿, 𝑁)𝜎(𝑦)2



 ∨ 0. (36)

On the set 𝐸𝑦,A⋄ (L) =
{
(𝑤, 𝑁)

�� Υ𝑦,A⋄ (𝑤, 𝑁,L) ≠ ∅
}

that maximization in (36) is taken
over a non-empty set. We are now ready to establish local Lipschitz continuity of 𝜅𝑦,A⋄ .

Lemma F.11. Suppose Assumption 1.(ii) holds. For any Lipschitz expansionL ofW and any

A⋄ ⊆ A(𝑦) such that there exists at least one enforceable action profile 𝛼 with supp(𝛼) = A⋄:

(i) 𝐸𝑦,A⋄ (L) contains any pair (𝑤, 𝑁) for non-coordinate direction 𝑁 .

(ii) 𝜅𝑦,L,A⋄ (𝑤, 𝑁) is locally Lipschitz continuous at (𝑤, 𝑁) ∉ Γ𝑦,A⋄ (L) ∪ (R2 × {±𝑒𝑖}).

Proof. Let Δenf
A⋄

be the closure of the set of all enforceable action profiles 𝛼 with supp(𝛼) =
A⋄. Fix any payoff pair 𝑤, any non-coordinate direction 𝑁 , any 𝛼 ∈ Δenf

A⋄
, and any 𝛿 in L𝑦 (𝑤).

Let (𝛼𝑛)𝑛≥0 ⊆ Δenf
A⋄

be a sequence with support A⋄ that approximates 𝛼. By Assumption 1.(i),
there exists 𝛽𝑛 such that (𝛽𝑛, 𝛿) enforces 𝛼𝑛 for each 𝑛. Lemma 4 in Bernard and Frei
(2016) applied to payoff function 𝑔̃(𝑦, 𝛼𝑛) = 𝑔(𝑦, 𝛼𝑛) + 𝛿𝜆(𝑦, 𝛼𝑛) shows that there exists 𝜙𝑛
such that (𝑇𝜙𝑛, 𝛿) enforces 𝛼𝑛. In particular, Φ𝑦,A⋄ (𝛼𝑛, 𝛿, 𝑁) ≠ ∅. Because the domain of
Φ𝑦,A⋄ is closed, it follows that Φ𝑦,A⋄ (𝛼, 𝛿, 𝑁) ≠ ∅. In particular, (𝛼, 𝛿) ∈ Υ𝑦,A⋄ (𝑤, 𝑁,L),
hence (𝑤, 𝑁) ∈ 𝐸𝑦,A⋄ (L). Moreover, because 𝛼 and 𝛿 were arbitrary, this shows that
Υ𝑦,A⋄ (𝛼, 𝑤,L) = Δenf

A⋄
×L𝑦 (𝑤), which is locally Lipschitz continuous in (𝛼, 𝑤, 𝑁). Together

definite as required because 𝜎(𝑦) has full rank.
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with Lemmas F.2 and F.10, this shows that 𝜅𝑦,A⋄ (𝑤, 𝑁,L) is locally Lipschitz continuous in
𝑤 and non-coordinate 𝑁 outside of Γ𝑦,A⋄ (L). □

Corollary F.12. For any concave Lipschitz expansion L of W , the function

𝜅𝑦,L(𝑤, 𝑁) = max
A⋄⊆A(𝑦)

𝜅𝑦,L,A⋄ (𝑤, 𝑁)

is locally Lipschitz continuous at (𝑤, 𝑁) outside of Γ𝑦 (L) ∪ (R2 × {±𝑒𝑖}). In particular,

solutions to (34) are continuously differentiable and continuous in initial conditions.

Proof. For any A⋄ ⊆ A(𝑦) that does not support an enforceable action profile 𝜅𝑦,L,A⋄ ≡ −∞,
hence it cannot contribute to the maximum. For any otherA⋄ ⊆ A(𝑦), the effective domain is
R2×(𝑆1\{±𝑒𝑖}) by Lemma F.11, hence 𝜅𝑦,L maximizes over the sames setsA⋄ for any (𝑤, 𝑁).
Because each 𝜅𝑦,L,A⋄ is locally Lipschitz continuous, the maximum over finitely many is
locally Lipschitz continuous as well. The last statement is the Picard-Lindelöf theorem. □

Corollary F.12 provides sufficient regularity for the perturbation argument discussed in
Section 5.1. For the remainder of this appendix, we establish local Lipschitz continuity of
the optimality equation for the trivial Lipschitz expansion L0 of W with ℎ ≡ 0.

Lemma F.13. Suppose Assumption 1 holds and that either players are restricted to pure

strategies or Assumption 2 also holds. For any coordinate direction 𝑁0, 𝜅𝑦,L0 (𝑤, 𝑁) is locally

Lipschitz continuous at any (𝑤, 𝑁0) ∈
⋃

A⋄
int 𝐸𝑦,A⋄ (L0) \ Γ𝑦,A⋄ (L0) with 𝜅𝑦,L0 (𝑤, 𝑁0) > 0.

Proof. Fix some support A⋄ ⊆ A(𝑦) and a coordinate direction 𝑁0 = ±𝑒𝑖. Since 𝑁0
⊤𝛽 = 0

requires 𝛽𝑖 = 0, incentives for player 𝑖 must be be provided through state transitions. By
Assumption 1.(ii), player −𝑖’s incentives can be provided entirely through the public signal
for any 𝛿−𝑖, which implies Υ𝑦,A⋄ (𝑤, 𝑁0,L0) = Υ𝑖

𝑦,A⋄
(𝑤,W). Therefore, local Lipschitz

continuity of Υ𝑦,A⋄ (𝑤, 𝑁0,L0) follows from Lemma F.8. Lemmas F.2 and F.10 now imply
that

𝜅𝑖A⋄
(𝑤, 𝑁) := max

(𝛼,𝛿)∈Υ𝑖
𝑦,A⋄ (𝑤,W)

2𝑁⊤(𝑔(𝑦, 𝛼) + 𝛿𝜆(𝑦, 𝛼) − 𝑤)
𝑟


𝜙𝑦,A⋄ (𝛼, 𝛿, 𝑁)𝜎(𝑦)2



 ∨ 0

is locally Lipschitz continuous at (𝑤, 𝑁0) ∈ int 𝐸𝑦,A⋄ (L0) \ Γ𝑦,A⋄ (L0) with coordinate 𝑁0.
Because 𝜅𝑖A⋄

coincides with 𝜅𝑦,L0,A⋄ for coordinate directions, this shows local Lipschitz
continuity of 𝜅𝑦,L0,A⋄ in 𝑤. Local Lipschitz continuity of 𝜅𝑦,L0 in 𝑤 follows as the finite
maximum over such functions.
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Local Lipschitz continuity in𝑁 will follow once we establish that (𝛼, 𝛿) ∉ Υ𝑖
𝑦,supp(𝛼) (𝑤,W)

cannot attain the maximum in (36) in a neighborhood of (𝑤, 𝑁0) with 𝜅𝑦,L0 (𝑤, 𝑁0) > 0.
Then, 𝜅𝑦,L0 must locally coincide with maxA⋄ 𝜅

𝑖
A⋄

. To that end, let 𝜙𝑖𝑦 (𝛼, 𝛿) denote the vec-
tor 𝜙𝑖 that minimizes



𝜙𝑖𝜎(𝑦)

 among all vectors 𝜙𝑖 such that incentives (𝑇𝜙𝑖, 𝛿𝑖) player 𝑖 to
play 𝛼𝑖 against 𝛼−𝑖. The product structure of the public signal implies that

𝜙𝑦 (𝛼, 𝛿, 𝑁)𝜎(𝑦)

 = ∥𝜙1

𝑦 (𝛼, 𝛿)𝜎(𝑦)∥/|𝑁2 | + ∥𝜙2
𝑦 (𝛼, 𝛿)𝜎(𝑦)∥/|𝑁1 |.

It follows that


𝜙𝑦 (𝛼, 𝛿, 𝑁)𝜎(𝑦)

 → ∞ as 𝑁 → 𝑁0 for any (𝛼, 𝛿) ∉ Υ𝑖

𝑦,supp(𝛼) (𝑤,W).
Let 𝑓 (𝛼, 𝛿, 𝑁) denote the function maximized in the optimality equation (34). Since the
numerator of 𝑓 is uniformly bounded, it follows that 𝑓 (𝛼, 𝛿, 𝑁) → 0 as 𝑁 → 𝑁0. Conversely,
local Lipschitz continuity of each 𝜅𝑖A⋄

implies that there exist (𝛼, 𝛿) ∈ Υ𝑖
𝑦,supp(𝛼) (𝑤,W) that

attain values arbitrarily close to 𝜅𝑦,L0 (𝑤, 𝑁0) > 0 in a small neighborhood of (𝑤, 𝑁0), hence
𝜅𝑦,L locally coincides with maxA⋄ 𝜅

𝑖
A⋄

. In particular, 𝜅𝑦,L0 is locally Lipschitz continuous. □

Lemma F.14. Suppose Assumption 1 holds. For any Lipschitz expansion L and any (𝑤, 𝑁)
in intVenf∗

𝑦 (W) ×𝑆1, there exist (𝛼, 𝛿) ∈ Υ𝑦,supp(𝛼) (𝑤, 𝑁,L) with 𝑁⊤(𝑔(𝑦, 𝛼) +𝛿𝜆(𝑦, 𝛼)) > 0.

Proof. Fix a payoff pair 𝑤0 ∈ intVenf∗
𝑦 (W). For any non-coordinate 𝑁 , let 𝑤𝑁 denote some

𝑣 ∈ Venf
𝑦 (W) that maximizes 𝑁⊤𝑣. By definition, 𝑤𝑁 is decomposed by an enforceable action

profile 𝛼𝑁 and incentives 𝛿𝑁 . Let 𝛿0 denote the W-feasible incentives at 𝑤0 that maximize
𝑁⊤𝛿(𝑦′) for each 𝑦′. This implies 𝑁⊤(𝑤0+𝑟𝛿(𝑦′)) ≥ 𝑁⊤(𝑤𝑁 +𝑟𝛿𝑁 (𝑦′)) for each 𝑦′ and, hence

𝑁⊤(𝛿0(𝑦′) − 𝛿𝑁 (𝑦′)) ≥
1
𝑟
𝑁⊤(𝑤𝑁 − 𝑤0) > 0. (37)

Because 𝜆𝑦,𝑦′ (𝛼𝑁 ) ≥ 0, it follows that

𝑁⊤(𝑔(𝑦, 𝛼𝑁 ) + 𝛿0𝜆(𝑦, 𝛼𝑁 ) − 𝑤0) > 𝑁⊤(𝑔(𝑦, 𝛼𝑁 ) + 𝛿𝑁𝜆(𝑦, 𝛼𝑁 ) − 𝑤𝑁 ) = 0. (38)

Since 𝛿0 is W-feasible, it lies in L0
𝑦 (𝑤0) ⊆ L𝑦 (𝑤0). By Assumption 1.(ii.b), there exists 𝛽

such that (𝛿0, 𝛽) restricted enforces 𝛼𝑁 , which shows that 𝜅𝑦,L(𝑤, 𝑁) > 0.

Suppose next that 𝑁 is coordinate, and suppose 𝑁 = 𝑒𝑖 for the sake of specificity. Let
(𝛼𝑁 , 𝛿𝑁 ) attain 𝑣̄enf,𝑖

𝑦 (W), denote 𝑤𝑁 = 𝑔(𝑦, 𝛼𝑁 )+𝛿𝑁𝜆(𝑦, 𝛼𝑁 ), and set 𝑤𝑡 := 𝑡𝑤𝑁+(1−𝑡)𝑤0.
For any 𝑡 ∈ [0, 1], let 𝛿𝑡 be defined by 𝑤𝑡 + 𝑟𝛿𝑡 (𝑦′) = 𝑤𝑁 + 𝑟𝛿𝑁 (𝑦′) for all states 𝑦′, and let 𝑎𝑖𝑡
denote player 𝑖’s action that maximizes ℓ(𝑡, 𝑎𝑖) := 𝑔𝑖 (𝑦, 𝑎𝑖, 𝛼−𝑖

𝑁
) + 𝛿𝑖𝑡𝜆(𝑦, 𝑎𝑖, 𝛼−𝑖𝑁 ). Because 𝛿𝑡

is affine in 𝑡, so is ℓ(𝑡, 𝑎𝑖) for each 𝑎𝑖. In particular, ℓ(𝑡) := max𝑎𝑖 ℓ(𝑡, 𝑎𝑖) is continuous and
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the maximizer 𝑎𝑖𝑡 changes only finitely many times. On each segment where 𝑎𝑖𝑡 is constant, it
follows as in (37) and (38) that ℓ(𝑡) is decreasing in 𝑡. Since 𝛿1 = 𝛿𝑁 , it follows that ℓ(1) = 0,
hence ℓ(0) > 0. By Assumption 1.(ii.c), there exist 𝛼−𝑖 and 𝛽 with 𝛽𝑖 = 0 such that (𝛿𝑤, 𝛽)
enforces (𝛼𝑖, 𝛼−𝑖

𝑁
). Because 𝛼𝑖 is incentivized by 𝛿𝑖𝑤 alone, any pure action in its support

must maximize ℓ(0, 𝑎𝑖). Thus, 𝛼𝑖 must satisfy 𝑔𝑖 (𝑦, 𝛼𝑖, 𝛼−𝑖
𝑁
) + 𝛿𝑖𝑡𝜆(𝑦, 𝛼𝑖, 𝛼−𝑖𝑁 ) = ℓ(0) > 0. □

Proof of Proposition F.9. Observe that 𝜅𝑦 (𝑤, 𝑁) defined in (34) coincides with 𝜅𝑦,L0 (𝑤, 𝑁)
defined in Corollary F.12. While 𝜅𝑦,L0 (𝑤, 𝑁) may maximize over the same action profile
multiple times, once for each A⋄ that contains supp(𝛼), it follows from Lemma F.10.(iii) that
largest value is attained for A⋄ = supp(𝛼). Local Lipschitz continuity for non-coordinate
directions is established in Corollary F.12. Local Lipschitz continuity at coordinate direc-
tions follows from Lemmas F.13 and F.14. Finally, fix any 𝑤∗ ∈ Venf∗

𝑦 (W) and 𝑁 . Let
(𝑤𝑛)𝑛≥0 ⊆ intVenf∗

𝑦 (W) approximate 𝑤. Lemma F.14 implies that there exist (𝛼𝑛, 𝛿𝑛) ∈
Υ𝑦,supp(𝛼𝑛) (𝑤𝑛, 𝑁,L0) with 𝑁⊤(𝑔(𝑦, 𝛼𝑛)+𝛿𝑛𝜆(𝑦, 𝛼𝑛)−𝑤𝑛) > 0. By passing to a subsequence,
we can assume that the support A⋄ along the entire sequence is constant. By passing to a
further subsequence, we may assume that 𝛼𝑛 and 𝛿𝑛 converge to limits 𝛼 and 𝛿, respectively.
Since we have established in the proofs of Lemmas F.11 and F.13 that Υ𝑦,A⋄ (𝑤, 𝑁,L0) is con-
tinuous in 𝑤, it follows that (𝛼, 𝛿) ∈ Υ𝑦,A⋄ (𝑤∗, 𝑁,L0), showing that Ξ𝑦,𝛼 (𝑤, 𝑁,W) ≠ ∅. □

G Characterizations of S𝑦 (W) and K𝑦 (W)

G.1 Local characterization of stationary payoffs

Proof of Lemma 6.2. For the first statement, note that DA⋄ (𝑤) is compact as the continuous
image of the compact set ΥA⋄ (𝑤). If A⋄ = {𝑎} is a singleton, then DA⋄ (𝑤) is convex as the
image of the convex setΨA⋄ (𝑤) under the affine map 𝑔(𝑦, 𝑎)+𝛿𝜆(𝑦, 𝑎). The second statement
follows from Lemma F.8 since DA⋄ (𝑤) is the continuous image of the continuous set ΥA⋄ (𝑤).

For the third statement, fix an arbitrary payoff pair 𝑤0 ∈ K𝑦,A⋄ (W) and two directions
𝑁 and 𝑁′ with 𝑁⊤𝑁′. Abbreviate 𝑤𝜀 := 𝑤0 + 𝜀𝑁′, and let 𝐹 (𝑤𝜀) denote the set of all W-
feasible 𝛿 at 𝑤𝜀. Fix an arbitrary action profile 𝛼 supported on A⋄ and set

𝑓𝛼 (𝜀) := max
𝛿∈ΨA⋄ (𝛼)∩𝐹 (𝑤𝜀)

𝑁⊤𝛿𝜆(𝑦, 𝛼).

We will show that there exists 𝜀0 > 0 so that 𝑓𝛼 (𝜀) is non-increasing for all 𝜀 > 𝜀0 and
any 𝛼. In particular, then so is max𝛼 𝑓𝛼 (𝜀). Let us view incentives 𝛿 as vectors (𝛿1, 𝛿2) ∈
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R2|Y |. In this notation, 𝑓𝛼 (𝜀) maximizes the convex set ΨA⋄ (𝛼) ∩ 𝐹 (𝑤𝜀) in direction 𝑁𝜆 :=
(𝑁1𝜆(𝑦, 𝛼), 𝑁2𝜆(𝑦, 𝛼)). It will be convenient to denote by 𝑁𝑤 the vector that contains 𝑁′,1

in the first |Y | dimensions and 𝑁′,2 in the latter dimensions so that a shift of 𝑤0 by 𝜀𝑁′

corresponds to a shift of the feasible set by −𝜀𝑁𝑤.
Suppose first that only feasibility constraints bind at 𝑤0, hence also at 𝑤𝜀 for 𝜀 sufficiently

small by continuity. Then any maximizing incentives 𝛿𝜀 at 𝑤𝜀 must be maximally feasible,
i.e., 𝑁⊤(𝑤𝜀 + 𝑟𝛿𝜀 (𝑦′)) = max𝑣∈W𝑦′ 𝑁

⊤𝑣 for each 𝑦′. It follows that 𝛿𝜀 = 𝛿0 − 𝜀𝑁𝑤/𝑟, hence

𝑁𝜆
⊤𝛿𝜀 = 𝑁𝜆

⊤𝛿0 −
𝜀

𝑟
𝑁𝑤

⊤𝑁𝜆 ≤ 𝑁𝜆⊤𝛿0

shows that 𝑓 is locally non-increasing. Note that the inequality is strict unless 𝜆(𝑦, 𝛼) = 0.
Suppose next that no feasibility constraint binds in direction 𝑁′, that is, there exists sufficiently
small 𝜀 > 0 such that 𝑤 + 𝜀𝑁′ + 𝑟𝛿𝑤 (𝑦′) ∈ W𝑦′ for each 𝑦′. Then 𝛿0 must maximize 𝑁𝜆⊤𝛿
at 𝑤𝜀 for 𝜀 > 0 sufficiently small, hence 𝑓 is locally constant. Finally, suppose that both
feasibility and enforceability constraints bind. Since both 𝐹 (𝑤0) and ΨA⋄ (𝛼) are convex,
there must exist outward normal vectors 𝑁𝐹 and 𝑁𝐸 to 𝐹 (𝑤0) and ΨA⋄ (𝛼), respectively,
and constants 𝛾𝐹 , 𝛾𝐸 > 0 such that 𝛾𝐹𝑁𝐹 + 𝛾𝐸𝑁𝐸 = 𝑁𝜆; see Figure 17. Let 𝐻 denote the
supporting hyperplane to 𝐹 (𝑤0) at 𝛿0. Since the entire feasible set shifts by −𝜀𝑁𝑤/𝑟, so
does the supporting hyperplane. It follows that any feasible 𝛿 ∈ 𝐹 (𝑤𝜀) satisfies 𝑁𝐹⊤𝛿 ≤
𝑁𝐹

⊤𝛿0 − 𝜀
𝑟
𝑁𝑤

⊤𝑁𝐹 . Any 𝛿 ∈ ΨA⋄ (𝛼) satisfies 𝑁𝐸⊤𝛿 ≤ 𝑁𝐸⊤𝛿0. In particular,

𝑁𝜆
⊤𝛿 = 𝛾𝐸𝑁𝐸

⊤𝛿 + 𝛾𝐹𝑁𝐹⊤𝛿 ≤ 𝛾𝐸𝑁𝐸⊤𝛿0 + 𝛾𝐹𝑁𝐹⊤𝛿0 −
𝜀

𝑟
𝑁𝑤

⊤𝑁𝐹 .

Let 𝑁𝐹 (𝜀) denote a normal vector to 𝐹 (𝑤𝜀) at the intersection with ΨA⋄ (𝛼). Note that
𝑁𝑤

⊤𝑁𝐹 (𝜀) is concave because 𝐹 (𝑤𝜀) is convex: the more 𝐹 (𝑤𝜀) is pulled inside of ΨA⋄ (𝛼),
the less aligned 𝑁𝐹 (𝜀) and 𝑁𝑤 become; see Figure 17. To see that 𝑓 is eventually non-
decreasing, note that 𝐹 (𝑤𝜀) is a compact set that travels through the convex set ΨA⋄ (𝛼).
Thus either 𝐹 (𝑤𝜀) leaves ΨA⋄ (𝛼) for some 𝜀0, at which point 𝑁𝑤⊤𝑁𝐹 (𝜀0) < 0 has to hold, or
𝐹 (𝑤𝜀) intersects ΨA⋄ (𝛼) forever. Because ΨA⋄ (𝛼) consists of finitely many hyperfaces, if
the sets intersect forever, eventually ΨA⋄ (𝛼) ∩ 𝐹 (𝑤𝜀) is a translation in the direction 𝑁𝑤 and
𝑓 is decreasing. Assumption 2 guarantees that the orientation of the hyperfaces are constant,
hence 𝛼 impacts only the location of the hyperfaces. However, those changes are uniformly
bounded, hence 𝜀0 can be chosen uniformly across 𝛼. □

Proof of Lemma 6.3. SinceDA⋄ (𝑤) is closed-valued, any curve C that satisfies𝑤 ∈ 𝜕DA⋄ (𝑤)
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𝐹 (𝑤𝜀)

𝑁𝐹

𝑁𝐸
𝑁𝑤

𝑁𝜆

𝐹 (𝑤)

ΨA⋄ (𝛼)

Figure 17: Local change in max𝛿 𝑁𝜆
⊤𝛿 when feasibility and enforceability constraints bind.

for all 𝑤 ∈ C is contained in S𝑦,A⋄ (W). The exterior boundary of any connected component
of S𝑦,A⋄ (W) is a closed curve. Suppose there exists 𝑤 ∈ 𝜕S𝑦,A⋄ (W) in the interior of
DA⋄ (𝑤). Then continuity of DA⋄ implies that for any neighborhood 𝑉 of 𝑤, there exists a
neighborhood𝑈 of 𝑤 such that 𝑉 ⊆ DA⋄ (𝑣) for any 𝑣 ∈ 𝑈. In particular, 𝑣 ∈ DA⋄ (𝑣) for any
𝑣 ∈ 𝑈 ∩𝑉 , showing that 𝑤 ∈ intS𝑦,A⋄ (W). □

Proof of Lemma 6.4. For any (𝛼, 𝛿) ∈ ΥA⋄ , player 𝑖 is indifferent between any actions in A𝑖
⋄.

Thus, we can fix arbitrary 𝑎𝑖0 ∈ A𝑖
⋄ and express the decomposition of player 𝑖’s payoff as

𝑣𝑖 (𝛼−𝑖, 𝛿𝑖) := 𝑔𝑖 (𝑦, 𝑎𝑖0, 𝛼
−𝑖) + 𝛿𝑖𝜆(𝑦, 𝑎𝑖0, 𝛼

−𝑖).

We first show monotonicity of the pre-image under the decomposition.

Claim 6. For any 𝛼−𝑖 with 𝜆(𝑦, 𝑎𝑖0, 𝛼
−𝑖) ≠ 0, the set 𝐻𝑖 (𝑣𝑖0, 𝛼

−𝑖) :=
{
𝛿𝑖

�� 𝑣𝑖 (𝛼−𝑖, 𝛿𝑖) = 𝑣𝑖0} is
a hyperplane with constant orientation that moves monotonically in 𝛼−𝑖.

Suppose first that Assumption 2.(ii) is satisfied. Then 𝐻𝑖 (𝑣0, 𝛼
−𝑖) consists of only a single

point 𝛿𝑖 = (𝑣𝑖0 − 𝑔
𝑖 (𝑦, 𝑎𝑖0, 𝛼

−𝑖))/𝜆𝑖 (𝑦, 𝑎𝑖0, 𝛼
−𝑖), which is monotone in 𝛼−𝑖 as a fractional linear

function as in the proof of Lemma F.7. Suppose next that Assumption 2.(i) and Condition (ii)
of Lemma 4.5 are satisfied with linear 𝜆. Linearity of 𝜆 imposes that there exists a vector 𝜆1

such that 𝜆(𝑦, 𝑎𝑖0, 𝛼
−𝑖) = 𝑎𝑖0𝛼̄

−𝑖𝜆1, where 𝛼̄−𝑖 is the expected action of 𝛼−𝑖. Thus, 𝐻𝑖 (𝑣0, 𝛼
−𝑖)

is the set of all 𝛿𝑖 such that 𝛿𝑖𝜆1 = (𝑣𝑖0 − 𝑔
𝑖 (𝑦, 𝑎𝑖0, 𝛼

−𝑖))/(𝑎𝑖0𝛼̄
−𝑖). It follows as in the proof of

Lemma 4.5 that in any enforceable mixed action profile, each player 𝑖 must place weight only
on two adjacent pure actions. Thus, the ratio is again monotone as a fractional linear function.

Claim 7. Let Υ𝑖
A⋄
(𝑤) be the projection of ΥA⋄(𝑤) onto coordinates (𝛼−𝑖, 𝛿𝑖). The incentive-

feasible pre-image 𝑣−1
𝑖
(𝑣𝑖0) =

{
(𝛼−𝑖, 𝛿𝑖) ∈Υ𝑖

A⋄
(𝑤)

�� 𝛿𝑖 ∈ 𝐻𝑖 (𝑣𝑖0, 𝛼−𝑖)} is path-connected.

Fix any (𝛼−𝑖0 , 𝛿
𝑖
0), (𝛼

−𝑖
1 , 𝛿

𝑖
1) ∈ 𝑣

−1
𝑖
(𝑣𝑖0) and set 𝛼−𝑖𝑡 := max{2𝑡, 1}𝛼−𝑖1 + min{1 − 2𝑡, 0}𝛼−𝑖0 .

By Claim 6, the set 𝐻 (𝑡) := {𝛼−𝑖𝑡 } × 𝐻𝑖 (𝑣𝑖0, 𝛼
−𝑖
𝑡 ) is a hyperplane with fixed orientation that

moves monotonically in 𝑡. Since 𝐻 (0) and 𝐻 (1/2) = 𝐻 (1) intersect the convex set Υ𝑖
A⋄

(𝑤),
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monotonicity implies that 𝐻 (𝑡) intersects ΥA⋄ (𝑤) for any 𝑡 ∈ (0, 1
2 ). Next, observe that

Υ𝑖
A⋄

(𝑤) is a polyhedron since the projection ofW-feasibility yields the polyhedral constraints
𝑤𝑖
𝑦′ ≤ 𝑤𝑖 + 𝑟𝛿𝑖 (𝑦′) ≤ 𝑤̄𝑖

𝑦′ , where 𝑤𝑖
𝑦′ and 𝑤̄𝑖

𝑦′ are player 𝑖’s lowest and highest payoff in
W𝑦′ , respectively. It follows that 𝐻 (𝑡) ∩ Υ𝑖

A⋄
(𝑤) is a polyhedron with constant orientation

of hyperfaces and “continuous right-hand side,” hence it is a continuous set-valued map. For
any 𝑡 ∈ (0, 1

2 ], let 𝛿𝑖𝑡 denote the projection of 𝛿𝑖0 onto 𝐻 (𝑡) ∩ Υ𝑖
A⋄

(𝑤), which is continuous.
For 𝑡 ∈ ( 1

2 , 1), set 𝛿𝑖𝑡 = (2𝑡−1)𝛿𝑖1+(2−2𝑡)𝛿𝑖1/2, which is continuous and lies in𝐻 (1)∩Υ𝑖
A⋄

(𝑤)
by convexity. Thus, (𝛼−𝑖𝑡 , 𝛿𝑖𝑡) is a continuous path from (𝛼−𝑖0 , 𝛿

𝑖
0) to (𝛼−𝑖1 , 𝛿

𝑖
1).

Claim 8. Define the coordinate sections of DA⋄ , given 𝑣−𝑖0 and conditional on 𝛿−𝑖0 , as

DA⋄ (𝑤 | 𝑣−𝑖0 , 𝛿
−𝑖
0 ) =

{
𝑣
�� ∃ (𝛼, 𝛿) ∈ ΥA⋄ (𝑤) with 𝑣 = 𝑣(𝛼, 𝛿), 𝑣−𝑖 = 𝑣−𝑖0 , and 𝛿−𝑖 = 𝛿−𝑖0

}
.

Under above conditions, DA⋄ (𝑤 | 𝑣−𝑖0 , 𝛿
−𝑖
0 ) is a continuous compact- and convex-valued map.

As in the proof of Lemma 5.5, Υ𝑖
A⋄

is a polyhedron. For any fixed 𝛿−𝑖, let 𝐹𝑖 (𝑤 | 𝛿−𝑖)
denote the set of all 𝛿𝑖 such that (𝛿𝑖, 𝛿−𝑖) is W-feasible at 𝑤. It is the polyhedron defined by

ℓ𝑖𝑦′ (𝑤−𝑖 + 𝑟𝛿−𝑖 (𝑦′)) ≤ 𝑤𝑖 + 𝑟𝛿𝑖 (𝑦′) ≤ 𝑢𝑖𝑦′ (𝑤−𝑖 + 𝑟𝛿−𝑖 (𝑦′))

for parametrizations ℓ𝑖
𝑦′ and 𝑢𝑖

𝑦′ of the lower and upper frontier of W𝑦′ , respectively. Since
ℓ𝑖
𝑦′ and 𝑢𝑖

𝑦′ are continuous, Υ𝑖
A⋄

(𝑤, 𝛿−𝑖) := Υ𝑖
A⋄

∩ Δ(A−𝑖
⋄ ) × 𝐹𝑖 (𝑤 | 𝛿−𝑖) is a polyhedron

with constant orientation of hyperfaces and continuous right-hand side. In particular, it is a
continuous compact- and convex-valued map. Therefore, so is DA⋄ (𝑤 | 𝑣−𝑖0 , 𝛿

−𝑖
0 ) as the image

of Υ𝑖
A⋄

(𝑤, 𝛿−𝑖0 ) under the continuous map 𝑣𝑖. Finally, the coordinate section

DA⋄ (𝑤 | 𝑣−𝑖0 ) =
⋃

(𝛼𝑖0,𝛿
−𝑖
0 )∈𝑣−1

−𝑖 (𝑣−𝑖0 )

DA⋄ (𝑤 | 𝑣−𝑖0 , 𝛿
−𝑖
0 )

is path-connected as the continuous image of a path-connected set by Claims 7 and 8. Since
the coordinate section is one-dimensional, path-connectedness coincides with convexity.

To show that S𝑦,A⋄ (W) has convex coordinate sections, we extend the above argument
to include the decomposed payoff pair. Specifically, reparametrize 𝛿 = ℎ(𝑤) + 𝑟𝛿 as in the
proof of Lemma F.8, where ℎ(𝑤) is the matrix that contains 𝑤 in each column. The set ZA⋄

of all (𝛼, 𝛿, 𝑤) that satisfy the transformed enforceability constraint (32) is a polyhedron with
constant orientation of hyperfaces, and the remainder of the argument is analogous. □
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G.2 Simplifications in specific settings

Proof of Lemma 6.1. Let 𝑤∗(𝛼) := 𝑔(𝑦, 𝛼) + 𝛿∗(𝛼)𝜆(𝑦, 𝛼) denote the unique payoff decom-
posed by 𝛼 and 𝛿∗, and by 𝑣∗(𝛼) := 𝑤∗(𝛼) + 𝑟𝛿∗(𝛼, 𝑦𝑠) the continuation payoff reached from
𝑤∗(𝛼) after a state transition. It follows from (31) that 𝑤𝑖∗(𝛼) and 𝑣𝑖∗(𝛼) do not depend on 𝛼𝑖.

Claim 9. The function 𝑣𝑖∗(𝛼) is either concave or convex in 𝛼−𝑖 for 𝑖 = 1, 2.

Equation (31) implies that 𝛿𝑖∗(𝛼−𝑖) is a ratio of two affine functions, where the denomi-
nator is different from 0 for any 𝛼−𝑖 by the monotonicity condition. Thus, there exist con-
stants 𝑐1, . . . , 𝑐8 with 𝑐7 > 0 and 𝑐7 + 𝑐8 > 0 such that 𝑣𝑖∗(𝛼−𝑖) = 𝑐1𝛼

−𝑖 + 𝑐2 + (𝑐3𝛼
−𝑖 +

𝑐4) (𝑐5𝛼
−𝑖 + 𝑐6)/(𝑐7𝛼

−𝑖 + 𝑐8). The claim follows since

𝜕2𝑣𝑖∗(𝛼−𝑖)
𝜕 (𝛼−𝑖)2 =

2(𝑐3𝑐8 − 𝑐4𝑐7) (𝑐5𝑐8 − 𝑐6𝑐7)
(𝑐7𝛼−𝑖 + 𝑐8)3

has a constant sign because the denominator is non-zero for any 𝛼−𝑖 ∈ [0, 1].
For any product setA⋄ ⊆ A(𝑦), letX𝑦,A⋄ (𝛼) denote the set of all payoffs pairs 𝑣 that can be

written as 𝑣 = 𝑔(𝑦, 𝛼)+𝛿0𝜆(𝑦, 𝛼)+𝑟𝛿0(𝑦𝑠) for some action profile𝛼 supported onA⋄ and 𝛿0 ∈
Ψ𝑦,A⋄ (𝛼). Let X𝑦,A⋄ denote the union over all such sets X𝑦,A⋄ (𝛼) over all 𝛼 supported on A⋄.

Claim 10. X𝑦,{1}×A2 (𝛼2) is the set of all payoffs (𝑣1, 𝑣2
∗ (1)) that satisfy 𝑣1 ≥ 𝑣1

∗ (𝛼2). Conse-
quently, X𝑦,{1}×A2 is the set of all payoffs (𝑣1, 𝑣2

∗ (1)) that satisfy 𝑣1 ≥ 𝑤1 for some 𝑤 ∈ X𝑦,A.
If player 1 plays action 0 instead, the same statements hold with reversed inequalities.

Fix some 𝑣0 ∈ X𝑦,{1}×A2 (𝛼2), decomposed by (1, 𝛼2) and 𝛿0 enforcing (1, 𝛼2). Then 𝛿
incentivizes player 1 to play action 1 against 𝛼2 if and only if 𝛿1(𝑦𝑠) ≥ 𝛿1

∗ (𝛼2, 𝑦𝑠). Thus,
such 𝑣0 must satisfy 𝑣1

0 ≥ 𝑣1
∗ (𝛼2). Since 𝑣∗(1, 𝛼2) ∈ X𝑦,A, the claim follows.

Fix now an arbitrary stationary payoff pair 𝑤0 ∈ S𝑦,{𝑎1}×A2 (W) decomposed by (1, 𝛼2)
and 𝛿0 ∈ Ψ𝑦,{1}×A2 and abbreviate 𝑣0 := 𝑤0 + 𝑟𝛿0(𝑦𝑠). It follows from Lemma F.7 that
𝛿2

0 = 𝛿2
∗ (1) and 𝛿1

0 ≥ 𝛿1
∗ (𝛼2). If 𝛿1

0 = 𝛿1
∗ (𝛼2), then 𝑤0 = 𝑤∗(1, 𝛼2), hence 𝑤0 ∈ S𝑦,A(W).

Suppose, therefore, that 𝛿1
0 > 𝛿

1
∗ (𝛼2), which implies 𝑣1

0 > 𝑣
1
∗ (1, 𝛼2). We will show that 𝑤0

lies in the desired convex hull by appealing to the following claim in various cases.

Claim 11. Suppose there exist 𝛼2
1 ≤ 𝛼2, 𝛼2

2 ≥ 𝛼2, and 𝛿𝑘 ∈ Ψ𝑦,(1,𝛼2
𝑘
) for 𝑘 = 1, 2 such that

𝑔1(𝑦, 1, 𝛼2
𝑘 ) + 𝛿

1
𝑘𝜆(𝑦, 1, 𝛼

2
𝑘 ) + 𝑟𝛿

1
𝑘 (𝑦𝑠) = 𝑣

1
0. (39)

Then there exist 𝜂 ∈ [0, 1] and 𝑤𝑘 ∈ S𝑦,supp(1,𝛼2
𝑘
) (W) for 𝑘 = 1, 2 with 𝑤0 = 𝜂𝑤1 + (1 − 𝜂)𝑤2.
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𝑣1
∗ (1, · )

0 𝛼̃2
1

𝑣1
∗ (1, 𝛼̃2)

𝑣1
0

𝛼̂2

𝑣1
∗ (1, · )

0 𝛼̃2
1

𝑣1
∗ (1, 𝛼̃2)𝑣1

0

𝛼̂2

Figure 18: Illustration of monotonicity properties of 𝑣1
∗ (1, 𝛼̃2).

Without loss of generality we may assume that 𝛿2
𝑘
= 𝛿2

∗ (1) since 𝛿2
∗ (1) makes player 2

indifferent between both pure actions. Set 𝑤𝑘 := 𝑔(𝑦, 1, 𝛼2
𝑘
) + 𝛿𝑘𝜆(𝑦, 1, 𝛼2

𝑘
) and 𝑣𝑘 := 𝑤𝑘 +

𝑟𝛿𝑘 (𝑦𝑠) and observe that 𝑤2
𝑘
= 𝑤2

0 and 𝑣𝑘 = 𝑣0. In particular, 𝑣𝑘 ∈ X𝑦,supp(1,𝛼2
𝑘
) ∩ W𝑦𝑠

and 𝑤𝑘 ∈ S𝑦,supp(1,𝛼2
𝑘
) (W). Since 𝛼2 is a convex combination of 𝛼2

1 and 𝛼2
2, taking convex

combinations in (39) shows that 𝛿1
0(𝑦𝑠) must lie between 𝛿1

1(𝑦𝑠) and 𝛿1
2(𝑦𝑠), hence 𝑤1

0 lies
between 𝑤1

𝑘
= 𝑣0 − 𝑟𝛿1

𝑘
(𝑦𝑠) for 𝑘 = 1, 2.

We are ready to show that S𝑦,{1}×A2 (W) is contained in the desired convex hull.

(i) Suppose first that 𝑣0 lies in both X𝑦,(1,1) and X𝑦,(1,0) , equivalent to 𝑣1
0 ≥ 𝑣1

∗ (1, 𝑎2) for
either pure action 𝑎2. The statement thus follows from Claim 11 for 𝛼2

1 = 0, 𝛼2
2 = 1, and

suitable 𝛿𝑘 ∈Ψ𝑦,(1,𝑘−1) for 𝑘 = 1, 2 that attain 𝑣0, which must exist since 𝑣0 ∈ X𝑦,(1,𝑘−1) .

(ii) Suppose next that 𝑣0 lies in X𝑦,(1,1) but not in X𝑦,(1,0) , equivalent to 𝑣1
∗ (1, 1) ≤ 𝑣1

0 <

𝑣1
∗ (1, 0). Because 𝑣1

∗ (1, 𝛼̃2) is either convex or concave by Claim 9, there is a unique
𝛼̂2 ∈ (0, 1) such that 𝑣1

∗ (1, 𝛼̂2) = 𝑣1
0 and 𝑣1

∗ (1, 𝛼̃2) < 𝑣1
0 if and only if 𝛼̃2 > 𝛼̂2; see

Figure 18. In particular, 𝑣1
0 > 𝑣1

∗ (1, 𝛼2) implies 𝛼̂2 < 𝛼2, hence the statement now
follows by applying Claim 11 to 𝛼2

1 = 𝛼̂2, 𝛿1 = 𝛿∗(1, 𝛼̂2), 𝛼2
2 = 1, and suitable 𝛿2 ∈

Ψ𝑦,(1,1) attaining 𝑣0 ∈ X𝑦,(1,1) .

(iii) The case 𝑣0 ∈ X𝑦,(1,0) \ X𝑦,(1,1) is completely analogous.

(iv) Finally, suppose that 𝑣0 is neither in X𝑦,(1,1) nor in X𝑦,(1,0) , equivalent to 𝑣1
0 < 𝑣

1
∗ (1, 𝑎2)

for either pure action 𝑎2. Then 𝑣1
∗ (1, 𝛼̃2) must be strictly concave. Since 𝑣1

0 > 𝑣
1
∗ (1, 𝛼2),

it cannot be that 𝑣1
0 minimizes 𝑣1

∗ (1, 𝛼̃2), hence there exist 0 < 𝛼2
1 < 𝛼

2 < 𝛼2
2 < 1 such

that 𝑣1
∗ (1, 𝛼2

𝑘
) = 𝑣1

0 for 𝑘 = 1, 2. The statement follows from Claim 11 for 𝛿𝑘 = 𝛿∗(1, 𝛼2
𝑘
).

For the converse, note that X𝑦,{𝑎1}×A2 (𝛼) ∩W𝑦𝑠 is continuous in 𝛼2 by Claim 10, hence so is

S𝑦,{𝑎1}×A2 (𝛼2,W) = 𝑟

𝑟 + 𝜆(𝑦, 𝑎1, 𝛼2)
𝑔(𝑦, 𝑎1, 𝛼2) + 𝑟

𝑟 + 𝜆(𝑦, 𝑎1, 𝛼2)
X𝑦,{𝑎1}×A2 (𝛼) ∩W𝑦𝑠 .

Fix any two 𝑤1, 𝑤2 ∈ S𝑦,A(W) ∪ S𝑦,(𝑎1,1) (W) ∪ S𝑦,(𝑎1,0) (W) with 𝑤2
𝑘
= 𝑣2

∗ (𝑎1) for 𝑘 = 1, 2.
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Ψ(𝐵,𝑆)Ψ(𝐵,𝑆)

Ψ(𝐵,𝐼 )Ψ(𝐵,𝐼 )

Ψ(𝐴,𝑆)Ψ(𝐴,𝑆)

Ψ(𝐴,𝐼 )Ψ(𝐴,𝐼 )

ΨA1×{𝑆}

Ψ{𝐵}×A2

Ψ{𝐴}×A2

ΨA1×{𝐼 }

ΨAΨA

X(𝐵,𝑆)X(𝐵,𝑆)

X(𝐵,𝐼 )X(𝐵,𝐼 )

X(𝐴,𝑆)X(𝐴,𝑆)

X(𝐴,𝐼 )X(𝐴,𝐼 )

XA1×{𝑆}

X{𝐵}×A2

X{𝐴}×A2

XA1×{𝐼 }

XAXA

Figure 19: ΨA⋄ and XA⋄ in the regime-change game. The relationship between ΨA and XA is concave
as evidenced by the fact that player 1’s payoff in XA is maximized at a mixed action profile.

They must be decomposed by (𝑎1, 𝛼2
𝑘
, 𝛿𝑘 ) with 𝛿2

𝑘
= 𝛿2

∗ (𝑎1), hence 𝑤𝑘 ∈ S𝑦,{𝑎1}×A2 (𝛼2
𝑘
,W).

By continuity, any convex combination of 𝑤1 and 𝑤2 must lie in that set for some 𝛼̃2. □

Proof of Lemma 7.2. Fix a state 𝑦with unique successor state 𝑦𝑠. We can write 𝜕K𝑦,A⋄ (W) as
the set of all payoffs𝑤where the convex set (W𝑦𝑠−𝑤)/𝑟 “leaves”Ψ𝑦,A⋄ , defined here as having
a non-empty intersection at 𝑤 and an empty intersection for some 𝑣 arbitrarily close to 𝑤.

Since 𝜆 is assumed to be strictly monotone for both players, Lemma F.7 implies that 𝛿𝑖∗ is
monotone in 𝛼−𝑖 for each 𝑖, hence Ψ𝑦,A is a rectangle with extremal points 𝛿∗(𝑎) for all 𝑎 ∈
A(𝑦). Moreover, Lemma F.7 implies that the set of incentives for one-sided mixtures satisfies

Ψ𝑦,A𝑖×{1} =
{
𝛿 ∈ R2 �� 𝛿𝑖 = 𝛿𝑖∗(1) and 𝛿−𝑖 ≥ min

{
𝛿1
∗ (0), 𝛿1

∗ (1)
}}

and similarly for Ψ𝑦,A𝑖×{0}; see Figure 19 for these sets in the regime-change game. In
particular, incentives of one-sided mixtures are precisely the boundaries of Ψ𝑦,𝑎 and Ψ𝑦,A.
Thus, if (W𝑦𝑠 − 𝑤)/𝑟 leaves Ψ𝑦,𝑎 or Ψ𝑦,A, it must also leave one of the sets Ψ𝑦,A𝑖×{𝑎−𝑖}.

For the converse inclusion, we need to show slightly more. Just because (W𝑦𝑠−𝑤)/𝑟 leaves
the boundary of K𝑦,𝑎 (W) or K𝑦,A(W) need not imply that it leaves the entire set. We need to
show that Ψ𝑦,A𝑖×{𝑎−𝑖} is “sandwiched” between the sets Ψ𝑦,𝑎 and Ψ𝑦,A in the following sense.

Claim 12. If 𝛿 is extremal in Ψ𝑦,A𝑖×{𝑎−𝑖} with outward normal vector 𝑁 , then 𝛿 is either
extremal in Ψ𝑦,A or some Ψ𝑦,𝑎 or with outward normal vector 𝑁 .

For the sake of specificity, consider Ψ𝑦,{1}×A2 of all 𝛿 with 𝛿2 = 𝛿2
∗ (1) and 𝛿1 ≥ 𝛿1

∗ (𝑎2),
where 𝑎2 minimizes 𝛿1

∗ (𝛼2). Fix any 𝛿 ∈ Ψ𝑦,{1}×A2 and suppose first that 𝛿1 > 𝛿1
∗ (𝑎2). Then

there are only two outward normal vectors 𝑁 = ±𝑒2. Observe that Ψ𝑦,{1}×A2 is precisely the
upper bound of Ψ𝑦,(1,𝑎2) and the lower bound of Ψ𝑦,(1,𝑎̄2) ∪ Ψ𝑦,A or vice versa, depending
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on whether 𝑎2 is 1 or 0, hence the claim follows. If 𝛿1 = 𝛿1
∗ (𝑎2), then because Ψ𝑦,(1,𝑎2) and

Ψ𝑦,A are both rectangles with one of them having its upper left corner and the other having
its lower left corner at 𝛿, the claim follows.

Fix now an arbitrary boundary point𝑤 ofK𝑦,{1}×A2 (W). Then the convex set (W𝑦𝑠−𝑤)/𝑟
must touch Ψ𝑦,{1}×A2 at some 𝛿, i.e., there exists an outward normal vector 𝑁 to Ψ𝑦,{1}×A2

such that the two convex sets Ψ𝑦,{1}×A2 and (W𝑦𝑠 −𝑤)/𝑟 are separated by the line orthogonal
to 𝑁 . In particular, (W𝑦𝑠 − 𝑤 + 𝜀𝑁)/𝑟 is strictly separated from Ψ𝑦,{1}×A2 for any 𝜀 > 0.
It follows from Claim 12 that one of the sets Ψ𝑦,(1,𝑎𝑖) , Ψ𝑦,(1,𝑎̄𝑖) , and Ψ𝑦,A also intersects
(W𝑦𝑠 − 𝑤)/𝑟 and is strictly separated from (W𝑦𝑠 − 𝑤 + 𝜀𝑁)/𝑟 for any 𝜀 > 0. □
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