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state process. As a consequence, (i) the correspondence from initial state to equilibrium

payoffs is preserved, which allows us to address a richer set of research questions, (ii)
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1 Introduction

Stochastic games encompass a wide range of economics applications, in which the environ-
ment responds stochastically to the agents’ actions.1 Despite their broad applicability, our un-
derstanding of equilibrium behavior in discrete-time stochastic games is largely confined to
two special classes of games. The first class are absorbing games, in which all but the initial
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1Stochastic games have been used to model dynamic competition with inventories (e.g., Kirman and Sobel

(1974)) or entry and exit dynamics (e.g., Ericson and Pakes (1995)), common resource extraction (e.g., Levhari
and Mirman (1980)), economic growth (e.g., Bernheim and Ray (1989)), strategic pricing (e.g., Bergemann
and Välimäki (1996)), social uprisings (e.g., Acemoglu and Robinson (2001)), research and development (e.g.,
Grossman and Shapiro (1987)), and strategic experimentation (e.g., Keller, Rady, and Cripps (2005)).
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state are absorbing. Characterizing equilibria in these games is tractable because continuation
values in absorbing states can be determined separately, hence the analysis reduces to a single
incentive constraint in the initial state. The second class are irreducible games, in which the
state process under any stationary strategy profile is an irreducible Markov chain. The distri-
bution over states thus converges to a steady-state distribution, which makes the limit equi-
librium payoff set independent of the initial state as players become arbitrarily patient. This
steady-state structure allows one to adapt linear programming techniques from repeated games
to characterize limit equilibrium payoffs. However, many economically relevant games are
neither absorbing nor irreducible. When the game is not irreducible or when players are im-
patient, continuation values may vary substantially across states, hence the discrete-time tech-
niques do not generalize well to such cases. This paper shows that in continuous time, it is pos-
sible to characterize equilibrium payoffs in substantially more general stochastic games.

We study a class of two-player stochastic games with finitely many states and imperfect
public monitoring in a continuous-time setting. The state process is a publicly observed
Markov process whose state transition intensity may depend on the players’ actions. In
addition, players observe a Brownian public signal whose expected change depends on the
current actions. We extend the techniques in Sannikov (2007) to this class of stochastic
games and to behavior strategies, yielding a differential characterization of extremal perfect
public equilibrium (PPE) payoffs. Because players are impatient, the initial state plays a non-
negligible role. Our main results characterizes the PPE payoff correspondence 𝑦 ↦→ E (𝑦),
which maps each initial state 𝑦 to the set of all PPE payoffs that are attainable from that
state. Because the continuation value after a transition to state 𝑦′ must lie in E (𝑦′), the
characterizations across states are generally coupled. If they are, we show how the PPE
payoff correspondence can be approximated through an iterative procedure for numerical
implementation. To the best of our knowledge, this paper is the first to extend the techniques
in Sannikov (2007) to behavior strategies. The ability to mix is particularly important in
applications where stationary or Markovian strategies are of interest, such as, for example, in
models of strategic experimentation. We characterize the PPE payoff correspondence for both
pure and behavior strategies, and provide sufficient conditions for the two to coincide.

The boundary of E (𝑦) may contain four types of payoffs, depending on which information
is used locally to provide incentives. At stationary payoffs, players condition only on state tran-
sitions, hence actions and continuation values are locally constant. Extremal stationary pay-
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Figure 1: At a non-stationary boundary payoff 𝑤, incentives can be provided by destroying value
after a state transition or through tangential transfers. The Brownian transfers generate an outward
drift, whose strength is the effective cost of providing incentives through those transfers.

offs are characterized through a local inclusion property that resembles a differential inclusion.
If players condition on state transitions and the passage of time, the boundary takes two differ-
ent forms, depending on which feasibility constraint binds. At continuation-binding payoffs,
feasibility in the continuation state binds, and the boundary is characterized via a linear pro-
gram that resembles the characterization of PPE payoffs in discrete time. The similarity stems
from the inherent discreteness of state transitions in games with finitely many states. If feasi-
bility in the current state binds, the boundary solves a first-order ordinary differential equation
(ODE), called the state-transition optimality equation. Lastly, if players condition on all avail-
able information, including the public signal, the boundary solves a second-order ODE sim-
ply called the optimality equation. The two optimality equations extend analogous equations
in Sannikov (2007) and Bernard (2024) to stochastic games and behavior strategies.

Stationary payoffs that attain extremal equilibrium payoffs are constrained-efficient if the
highest-feasible continuation values after a state transition provide sufficient incentives; see
Figure 1. All other boundary payoffs are constrained-inefficient. The optimality equations
capture how players balance instantaneous payoffs, the impact of the chosen actions on
future opportunities, and the cost of providing incentives. Incentives are provided either by
destroying value after state transitions or by transferring value tangentially to E (𝑦) based on
realizations of the public signal. Because the players are impatient and the public signal
is noisy, relying on tangential transfers is not costless. The optimality equation shows that
the cost of tangential transfers is proportional to their quadratic variation and the curvature
of 𝜕E (𝑦). The boundary is characterized by the state-transition optimality equation when such
transfers are too costly to be used effectively. A third form of inefficiency, which is exclusive
to non-irreducible stochastic games, arises at continuation-binding payoffs. If the payoff
difference between states is large relative to the players’ patience, maximizing the probability
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of transitions to favorable states is the players’ primary concern. In extreme cases, only a single
action profile may be enforceable even if it is constrained-inefficient in the current state.

In applied work, simpler classes of equilibria are often of interest. Our methodology also
yields a characterization of payoffs attainable in state-order dependent PPE, which condition
on the public history only through the order of states visited, but neither on the times of state
transitions nor on the time spent in each state. A special case of state-order dependent PPE
are Markov-perfect equilibria (MPE), for which we provide a simple verification result.

We apply our framework to a winner-take-all, two-stage patent race, similar in spirit
to Grossman and Shapiro (1987). Two competing research labs choose how many resources
to invest, which determines the arrival rate of breakthroughs. Each lab must achieve two
breakthroughs to secure the patent. While intermediate breakthroughs are publicly observed,
the investment levels are private. Instead, the labs observe a noisy Brownian signal that is
informative about the chosen research effort. Our main insight is that when the marginal cost
of research increases with intensity, the two labs engage in a tacit non-compete agreement
along the efficient frontier of the PPE correspondence. They take turns exerting minimal
effort, using the public signal to monitor compliance. This is in stark contrast to the MPE in
Grossman and Shapiro (1987), where research intensities increase with research progress.

On the technical side, this paper extends the continuous-time methods of Sannikov (2007)
and Bernard (2024) to stochastic games and behavior strategies. Both papers characterize
the PPE payoff set in repeated games; the former with Brownian information, the latter with
both Poisson and Brownian information. Since the state process in our model generates
Poisson-type information, the signal structure matches Bernard (2024). However, the players
face different constraints on how they can use this information, hence most proofs do not
readily extend to our setting. While players are free to ignore Poisson signals in a repeated
game, players in a stochastic game must react to state transitions. As mentioned above, this
may restrict the set of enforceable action profiles and cause inefficiencies. The extension to
behavior strategies has a twofold impact on enforceability. If a player mixes, the set of their
own incentives shrink because they have to be indifferent between all pure actions in the
support. However, mixing may enlarge the set of enforceable responses by their opponents
by smoothing the impact of the opponent’s deviations on public signals. The latter property
implies that enforceability for behavior strategies is a set of bilinear constraints rather than a
set of affine constraints as it is the case for pure strategies. This poses a significant challenge
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to establishing regularity of the optimality equations—a key ingredient in the proof—which
has to be established jointly in actions and incentives. We show that the solutions to the
optimality equations are sufficiently well-behaved if either (i) players are restricted to pure
strategies, (ii) state transitions satisfy a product structure, or (iii) each state has a unique
successor state and each stage game has two pure actions. These conditions guarantee that
if two pure actions of a player are statistically distinguishable against some action of their
opponent, they can be distinguished also against nearby mixed actions. In addition, we derive
monotonicity results with respect to the game primitives not present in earlier work.

The most closely related paper in discrete time is Pęski and Wiseman (2015), which
establishes a folk theorem in a related model as the length of the time period shrinks to zero.
In their framework, the intensity of state transitions and the discount rate are fixed per unit of
time, while the informativeness of the public signal is fixed per period. As the period length
vanishes, the state transitions converge to Poisson processes and the public signal becomes
perfectly informative. In this limit, providing incentives through the public signal is costless,
hence the only binding constraints are feasibility and individual rationality. This is different
from our setting where providing incentives through the public signal is costly.

Aside from the folk theorems in Dutta (1995) and Pęski and Wiseman (2015), the tech-
niques used to study stochastic games in discrete time often rely on a very specific form of the
underlying state process. The analysis of irreducible games often relies on convergence to a
steady state distribution (e.g., Hörner, Sugaya, Takahashi, and Vieille (2011) and Fudenberg
and Yamamoto (2011)), whereas the analysis of absorbing games often hinges on the fact
that there is only a single non-absorbing state (e.g., Kohlberg (1974), Mertens and Neyman
(1981), and Mertens, Neyman, and Rosenberg (2009)). By contrast, our characterization is
valid for rather general state processes. For pure-strategy PPE, the only restriction is that the
state space is finite. For behavior-strategy PPE, we impose additional restrictions on how the
players’ actions affect transition intensities, but not on which state transitions are feasible.

The techniques in this paper do not readily extend to infinite state spaces or to games
with perfect monitoring. If the state process follows a diffusion process, techniques to
characterize PPE have been developed in concurrent work by Faingold and Sannikov (2020).
For continuous-time stochastic games with perfect monitoring, see Neyman (2017).

Because differential equations lend themselves well to numerical methods, our ODE
characterization also contributes to the literature on computing equilibrium payoffs. Existing
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algorithms focus on settings with either patient players (e.g., Hörner et al. (2011)) or perfect
monitoring (e.g., Yeltekin, Cai, and Judd (2017) or Abreu, Brooks, and Sannikov (2020)). Our
techniques provide an algorithm for impatient players with imperfect public monitoring.

The remainder of the paper is organized as follows. The model is presented in Section 2
and illustrated with a simple running example of a political regime-change game in Section 3.
Section 4 states our assumptions and describes enforceability and self-generation in our
setting. Section 5 provides a heuristic derivation of the PPE payoff correspondence. Section 6
characterizes stationary, MPE, and state-order dependent PPE payoffs. Section 7 completes
the argument sketched in Section 5 and it contains the main result. Section 8.1 applies
the techniques to a two-stage patent race, Section 8.2 discusses computational aspects, and
Section 8.3 studies monotonicity of the PPE payoff correspondence. Section 9 concludes.
The proofs are contained in Appendices A–C and Online Appendices F–I.

2 Model

Two players 𝑖 = 1, 2 play a continuous-time stochastic game with a finite state space Y . In
each state 𝑦 ∈ Y , each player 𝑖 has a finite set A𝑖 (𝑦) of pure actions available with typical
element 𝑎𝑖. We denote by ΔA𝑖 (𝑦) the set of player 𝑖’s mixed actions with typical element 𝛼𝑖.
We denote by A(𝑦) := A1(𝑦) ×A2(𝑦) the set of all pure action profiles 𝑎 = (𝑎1, 𝑎2). If pure
action profile 𝑎 is played in state 𝑦, each player 𝑖 receives an expected flow payoff 𝑔𝑖 (𝑦, 𝑎),
extended to mixed actions by bilinearity. The expected flow payoff is the analogue of the
ex-ante stage game payoff in discrete time and is unobserved by the players. The state
evolves according to a Markov process 𝑆 = (𝑆𝑡)𝑡≥0 that transitions from state 𝑦 to 𝑦′ with
instantaneous intensity 𝜆𝑦,𝑦′ (𝑎) ≥ 0 when pure action profile 𝑎 is played, extended to mixed
actions by bilinearity. It will be convenient to denote by 𝜆(𝑦, 𝛼) := (𝜆𝑦,𝑦1 (𝛼), . . . , 𝜆𝑦,𝑦 |Y | (𝛼))

⊤

the column vector of all transition intensities under action profile 𝛼.

Actions are only imperfectly observable through their impact on the state process 𝑆 and a
publicly observable signal 𝑋 . In state 𝑦, the signal 𝑋 is a 𝑑 (𝑦)-dimensional drifted Brownian
motion with volatility matrix 𝜎(𝑦) and drift rate 𝜇(𝑦, 𝑎), again extended to mixed actions by
bilinearity. Without loss of generality, the signal is driven by a state-independent Brownian
motion 𝑍 of dimension 𝑑 ≥ max𝑦 𝑑 (𝑦) and 𝜎(𝑦) ∈ R𝑑 (𝑦)×𝑑 is of full rank 𝑑 (𝑦). The full
rank condition guarantees that 𝜎(𝑦) admits a right inverse, which we denote by 𝜎−1(𝑦) with
slight abuse of notation. The public information F𝑡 at time 𝑡 is a 𝜎-algebra that contains the
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history of the processes 𝑆 and 𝑍 up to time 𝑡, together with sufficiently rich information for
public randomization. We denote by F = (F𝑡)𝑡≥0 the filtration of public information.

Definition 2.1. A (public) strategy 𝐴𝑖 of player 𝑖 is an F-predictable process with values in
ΔA𝑖 (𝑆) or the limit of a sequence of such processes.2 A pure strategy takes values in A𝑖 (𝑆).

The public signal is defined pathwise via d𝑋𝑡 = 𝜎(𝑆𝑡) d𝑍𝑡 , and the impact of a strategy
profile 𝐴 = (𝐴1, 𝐴2) is modeled through a change of probability measure to 𝑄𝐴 = (𝑄𝐴

𝑡 )𝑡≥0,
under which players observe the game. Under 𝑄𝐴, the public signal takes the form

𝑋𝑡 =

∫ 𝑡

0
𝜇(𝑆𝑠, 𝐴𝑠) d𝑠 +

∫ 𝑡

0
𝜎(𝑆𝑠) d𝑍 𝐴

𝑠 , (1)

where 𝑍 𝐴 = 𝑍 −
∫
𝜎−1(𝑆𝑠)𝜇(𝑆𝑠, 𝐴𝑠) d𝑠 is a 𝑄𝐴-Brownian motion by Girsanov’s theorem.

Moreover, under 𝑄𝐴, state transitions to state 𝑦 at time 𝑡 occur with instantaneous inten-
sity 𝜆𝑆𝑡− ,𝑦 (𝐴𝑡). The details of the mathematical foundation are relegated to Appendix A.

Remark 2.1. Simon and Stinchcombe (1989) and Neyman (2017) demonstrate that continuous-
time strategies may not have well-defined outcomes if they depend on actions chosen in the
immediate past. The requirement that strategies condition only on public information resolves
this issue, hence each strategy is admissible in the sense of Neyman (2017).

Both players discount future payoffs at discount rate 𝑟 > 0. Player 𝑖’s discounted expected
future payoff or player 𝑖’s continuation value under strategy profile 𝐴 at time 𝑡 ≥ 0 is

𝑊 𝑖
𝑡 (𝑆𝑡 , 𝐴) =

∫ ∞

𝑡

𝑟e−𝑟 (𝑠−𝑡)E𝑄𝐴
𝑠

[
𝑔𝑖 (𝑆𝑠, 𝐴𝑠)

��F𝑡

]
d𝑠. (2)

The factor 𝑟 normalizes the total discounting weights to 1. As a consequence, all feasible pay-
offs lie in the convex hull of stage-game payoffs V0 := conv{𝑔(𝑦, 𝑎) | 𝑎 ∈ A(𝑦), 𝑦 ∈ Y}.

Definition 2.2. A strategy profile 𝐴 is a perfect public equilibrium (PPE) for initial state 𝑆0

if for each player 𝑖 and all possible deviations 𝐴̃𝑖,

𝑊 𝑖 (𝑦, 𝐴) ≥ 𝑊 𝑖 (𝑦, ( 𝐴̃𝑖, 𝐴−𝑖)) (3)

holds almost everywhere on the set {𝑆 = 𝑦} for each state 𝑦.3

2Because the times of state transitions are totally inaccessible, they cannot be approximated by a sequence
of predictable times. Thus, no strategy can anticipate state changes. Allowing the limit of a sequence of F-
predictable processes closes the strategy space by allowing non-predictable public randomization.

3Formally, (3) holds for 𝑃 ⊗ 𝐿𝑒𝑏𝑒𝑠𝑔𝑢𝑒-almost every (𝜔, 𝑡) ∈ {𝑆 = 𝑦}, where 𝑃 is a reference measure with
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We denote by E (𝑟; 𝑦) the set of all payoff pairs that are achievable by a PPE with initial
state 𝑦. For most of the paper, the discount rate is fixed and we may simply write E (𝑦). We
denote by E (𝑟) or simply by E the family (E (𝑟; 𝑦))𝑦∈Y of equilibrium payoff sets. We denote
by E 𝑝 (𝑟; 𝑦) and E 𝑝 (𝑟) the corresponding pure-strategy PPE payoff sets.

By deviating to the strategy of myopic best replies to their opponent’s strategy, each
player 𝑖 can ensure an equilibrium payoff of at least their lowest minmax payoff

𝑣𝑖 = min
𝑦∈Y

min
𝛼−𝑖∈ΔA−𝑖 (𝑦)

max
𝑎𝑖∈A𝑖 (𝑦)

𝑔𝑖 (𝑦, (𝑎𝑖, 𝛼−𝑖)).

Let 𝑣𝑖
𝑝

denote the lowest pure-action minmax payoff, and denote by V∗
0 and V 𝑝∗

0 the set of all
payoff pairs 𝑤 ∈ V0 where 𝑤𝑖 is at least 𝑣𝑖 and 𝑣𝑖

𝑝
, respectively. The subscript 0 indicates that

V0 and V∗
0 are rather naive bounds for the sets of feasible and individually rational payoffs

because they do not condition on the intensity of state transitions. Section D.2 contains tighter
bounds for the sake of computation, but the exposition in the main text is simpler with V∗

0 .
In certain applications, simpler classes of equilibria may be of interest, in which players

condition on only a subset of the available information. Markov strategies condition only on
the current state, and state-order dependent strategies condition only on the order of states
visited, but neither on the time of state transitions nor on the time spent in each state.

Definition 2.3. PPE 𝐴 is a Markov perfect equilibrium (MPE) if there exist 𝛼𝑖
∗(𝑦) ∈ ΔA𝑖 (𝑦)

for each state 𝑦 such that 𝐴𝑖 = 𝛼𝑖
∗(𝑆) for 𝑖 = 1, 2. PPE 𝐴 is state-order dependent if there

exist 𝛼̂𝑖 (𝑦1, . . . , 𝑦𝑘 ) ∈ ΔA𝑖 (𝑦𝑘 ) for each sequence of states (𝑦1, . . . , 𝑦𝑘 ) such that 𝐴𝑖 = 𝛼̂𝑖 (𝑆)
for 𝑖 = 1, 2, where 𝑆𝑡 is the sequence of states visited by 𝑆 up to and including time 𝑡.

Let E𝑚 (𝑟; 𝑦) and E𝑠 (𝑟; 𝑦) denote the set of payoffs achievable in MPE and state-order
dependent PPE, respectively. Denote by E𝑟 (𝑟; 𝑦) the state-order dependent PPE payoffs with
public randomization. We use superscript 𝑝 to denote their restrictions to pure strategies.

3 Example of a regime-change game

Consider a political regime-change game in which two ideological groups 𝑖 = 1, 2 compete
for power. State 𝑦𝑖 indicates that group 𝑖 holds office. The incumbent 𝑖 chooses between a
benevolent rule with a relatively fair division of the economic surplus and an authoritarian

respect to which all𝑄𝐴 are defined; see Appendix A. Each family𝑄𝐴 is absolutely continuous with respect to 𝑃,
hence (3) also holds for 𝑄𝐴 ⊗ 𝐿𝑒𝑏𝑒𝑠𝑔𝑢𝑒-almost every (𝜔, 𝑡) ∈ {𝑆 = 𝑦}: no player has a profitable deviation on
the path. The 𝑃 ⊗ 𝐿𝑒𝑏𝑒𝑠𝑔𝑢𝑒 qualifier implies that no player has a profitable deviation off the path either.
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Figure 2: Game primitives in state 𝑦1 in the regime-change game; primitives in 𝑦2 are symmetric.

rule that appropriates a large share of the surplus, denoted by A𝑖 (𝑦𝑖) = {𝐵, 𝐴} ≜ {0, 1}. The
non-incumbent −𝑖 decides whether to submit to the incumbent or to instigate a revolution, de-
noted byA−𝑖 (𝑦𝑖) = {𝑆, 𝐼} ≜ {0, 1}. Unlike many related models in the literature, the division
of surplus is stochastic and the implemented policies are only imperfectly observed. Specif-
ically, consider an orthogonal decomposition of welfare 𝑋 = (𝑋1, 𝑋2) into components 𝑋1,
stemming from issues on which the two groups agree on, and 𝑋2, stemming from issues on
which the two groups have diametrically opposite views. Group 1 enjoys negative changes
in 𝑋2 and group 2 enjoys positive changes in 𝑋2 so that the ex-post payoffs of group 𝑖 are
d𝑉 𝑖

𝑡 = d𝑋1
𝑡 + (−1)𝑖d𝑋2

𝑡 − 3𝐴𝑖
𝑡 d𝑡, where we normalize the flow cost of the cooperative action

to 0 and the non-cooperative action has a flow cost of 3. The two groups’ actions affect the
drift rates of 𝑋1 and 𝑋2 via 𝜇1(𝑦𝑖, 𝑎) = 3−2𝑎−𝑖 and 𝜇2(𝑦𝑖, 𝑎) = (−1)𝑖 (1+2𝑎𝑖). The expected
flow payoffs are then 𝑔𝑖 (𝑦, 𝑎) = 𝜇1(𝑦, 𝑎) + (−1)𝑖𝜇2(𝑦, 𝑎) − 3𝑎𝑖. Aggregate welfare 2𝑋1 de-
pends only on the non-incumbent’s actions, and the expected division of total welfare is the
incumbent’s choice. The frequency of state transitions is

𝜆(𝑦𝑖, 𝑎) =
1
2
(2 − 𝑎𝑖) (1 + 8𝑎−𝑖);

see Figure 2 for the game primitives in matrix form. An authoritarian regime halves the
frequency of revolutions by maintaining an oppressive state apparatus at a flow cost of 3.
Both groups discount the future at discount rate 𝑟 = 1. Either group can ensure a payoff of
at least 0 by choosing to cooperate when they are not in charge. The set V∗

0 is thus the set of
all payoff pairs of conv(𝑔(Y ,A)) in the first quadrant; see Figure 3.

Each stage game has a unique Nash equilibrium in which the two groups cooperate and
both receive their highest-possible stage-game payoff. If a single group were to rule indefi-
nitely, the efficient PPE would involve permanent cooperation. However, the possibility of a
regime change undermines this outcome: the opposition is tempted to instigate a revolution
in order to seize power, and the incumbent is tempted to install an authoritarian regime to
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Figure 3: The PPE payoff correspondence E in the regime-change game. The hatched areas are E𝑟 .
Payoffs E𝑚 attained in the two Markov-perfect equilibria are highlighted with squares and circles,
respectively. Grey arrows indicate the directions, in which the continuation value can move in absence
of revolutions. Dashed arrows show the change in continuation value when a revolution occurs.

remain in power. Figure 3 shows the three different equilibrium payoff correspondences E𝑚,
E𝑟 , and E computed with the main results of the paper for discount rate 𝑟 = 1. There are two
Markov-perfect equilibria, in which one group always cooperates and the other group cooper-
ates only when in power. The revolutions instigated by one group reduce the long-run value
of incumbency for both, thereby reducing the profitability of deviations. However, an unnec-
essarily high amount of value is destroyed by instigating revolutions in every second term. In
a state-order dependent PPE, a higher sum of payoffs can be attained through less frequent
revolutions; see Figure 3. In the most efficient such PPE, the groups randomize every third
term between absorption in the MPE or continued cooperation for another three terms.

Outside the set of state-order dependent PPE payoffs, the boundary is characterized by
the optimality equations. At such boundary payoffs, the generically unique action profile
that solves the optimality equation must be played in equilibrium; see Figure 3. The efficient
frontier is a solution to the state-transition optimality equation, which means that the group’s
strategies locally condition only on the occurrence of revolutions and time, not on welfare
realizations. The PPE that attains the payoff pair 𝑤∗ with the highest sum of payoffs begins
with a cooperative phase, during which the continuation value drifts along the boundary
towards the MPE payoff 𝑤̂ (𝑦1). In absence of revolutions, 𝑤̂ (𝑦1) is reached at a deterministic
time 𝑡0, at which point group 2 begins to instigate a revolution and players follow the MPE from
there on. While the non-incumbent is willing to cooperate initially, doing so forever is not
incentive compatible. If a state transition occurs before time 𝑡0, the continuation value jumps
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to the symmetric segment on the boundary of E (𝑦2), where both groups cooperate until 𝑤̂◦(𝑦2)
is reached, and so on. Either group’s utility is higher than in any state-order dependent PPE
payoff in E𝑟 (𝑦1) because cooperation is entirely front-loaded. Other extremal PPE payoffs are
solutions to the optimality equation, where the strategies locally do condition on welfare.

4 Construction of equilibria

To construct perfect public equilibria, we first describe how the players’ continuation value
depends on the publicly available information. For that purpose, define the processes

𝐽
𝑦
𝑡 =

∑︁
0<𝑠≤𝑡

1{𝑆𝑠=𝑦,𝑆𝑠−≠𝑦} (4)

that count the number of transitions to state 𝑦. Its instantaneous intensity is 𝜆𝑆𝑡− ,𝑦 (𝐴𝑡). The
increment d𝐽𝑦𝑡 is 1 if a state transition to state 𝑦 occurs at time 𝑡 and it is 0 otherwise. We
obtain the following stochastic differential representation of the continuation value.

Lemma 4.1. A semimartingale 𝑊 is the continuation value of a strategy profile 𝐴 for initial

state 𝑦0 if and only if 𝑊 is bounded and for 𝑖 = 1, 2, it holds that

d𝑊 𝑖
𝑡 = 𝑟 (𝑊 𝑖

𝑡 − 𝑔𝑖 (𝑆𝑡 , 𝐴𝑡)) d𝑡 + 𝑟𝛽𝑖𝑡 (𝜎(𝑆𝑡) d𝑍𝑡 − 𝜇(𝑆𝑡 , 𝐴𝑡) d𝑡)

+ 𝑟
∑︁
𝑦∈Y

𝛿𝑖𝑡 (𝑦) (d𝐽
𝑦
𝑡 − 𝜆𝑆𝑡− ,𝑦 (𝐴𝑡) d𝑡) + d𝑀 𝑖

𝑡

(5)

for a martingale 𝑀 𝑖 orthogonal to
∫ ·

0 𝜎(𝑆𝑡) d𝑍𝑡 and (𝐽𝑦)𝑦∈Y with 𝑀𝑖
0 = 0, predictable and

locally square-integrable processes 𝛽𝑖 and 𝛿𝑖 (𝑦) for 𝑦 ∈ Y , and 𝑆 induced by 𝐴 with 𝑆0 = 𝑦0.

The first term in (5) is a drift term that captures the expected change in the continuation
value. If player 𝑖 extracts a flow payoff that exceeds their continuation value, their continuation
value has to decrease in return. Geometrically, this means 𝑊 moves away from the flow
payoff 𝑔(𝑦, 𝐴𝑡) in expectation. The second term is a diffusion term that captures how the
continuation value responds to the public signal. In a continuous-time setting, rewards or
punishments 𝑟𝛽𝑖𝑡 are provided proportionally to the difference between the observed change
𝜎(𝑆𝑡) d𝑍𝑡 in the signal and its expected change 𝜇(𝑆𝑡 , 𝐴𝑡) d𝑡. The third term captures the
impact of state transitions. Since d𝐽𝑦 = 1 if and only if the state transitions to state 𝑦, the term
𝑟𝛿𝑖𝑡 (𝑦) is player 𝑖’s reward or punishment when such a transition occurs. If a state transition
to state 𝑦 is good news for player 𝑖, then its absence is bad news. Therefore, the continuation
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value experiences a drift of −𝑟𝛿𝑖𝑡 (𝑦)𝜆𝑆𝑡− ,𝑦 (𝐴𝑡) d𝑡 in the opposite direction. The final term is a
martingale that reflects the use of public randomization. Changes in the continuation value due
to public randomization average out in expectation and 𝑀 = 0 if the players do not use it.

4.1 Enforceability

A one-shot deviation is a deviation for one pair (𝜔, 𝑡), where𝜔 is an element of the underlying
probability space, determining the realization of the publicly observable processes. An action
profile is enforceable if no one-shot deviation increases the drift of the continuation value.

Definition 4.2. An action profile 𝛼 is enforceable in state 𝑦 if there exists a continuation

promise (𝛽, 𝛿) with 𝛽 = (𝛽1, 𝛽2)⊤and 𝛿 = (𝛿1, 𝛿2)⊤such that for 𝑖 = 1, 2 and each 𝑎̃𝑖 ∈ A𝑖 (𝑦),

𝑔𝑖 (𝑦, 𝛼) + 𝛽𝑖𝜇(𝑦, 𝛼) + 𝛿𝑖𝜆(𝑦, 𝛼) ≥ 𝑔𝑖 (𝑦, 𝑎̃𝑖, 𝛼−𝑖) + 𝛽𝑖𝜇(𝑦, 𝑎̃𝑖, 𝛼−𝑖) + 𝛿𝑖𝜆(𝑦, 𝑎̃𝑖, 𝛼−𝑖). (6)

A strategy profile 𝐴 is enforceable for initial state 𝑦0 if there exist processes (𝛽𝑡)𝑡≥0, (𝛿𝑡)𝑡≥0

such that (6) is satisfied a.e. for the induced state process 𝑆.

Contrary to discrete-time games, the existence of profitable one-shot deviation does not
preclude a strategy profile from being a PPE—as long as such deviations do not exist on a set
of positive measure. We obtain the following positive-measure deviation principle, stating
that the local incentive constraint (6) is sufficient if it is satisfied almost everywhere.

Lemma 4.3. A strategy profile 𝐴 is a PPE for initial state 𝑦0 if and only if (𝛽, 𝛿) related to

𝐴 by (5) enforces 𝐴 for the induced state process 𝑆 with 𝑆0 = 𝑦0.

For the characterization of PPE payoffs—but not Markov-perfect and state-order depen-
dent PPE payoffs—we need to make some assumption on the public signal in any given state 𝑦
to ensure that the ODEs arising in the characterization are sufficiently well-behaved.

Definition 4.4. For any 𝑦, any 𝑎 ∈ A(𝑦), and any player 𝑖 = 1, 2, let 𝑀 𝑖
𝑦 (𝑎) denote the matrix

with column vectors 𝜇(𝑦, 𝑎̃𝑖, 𝑎−𝑖) − 𝜇(𝑦, 𝑎) for any deviation 𝑎̃𝑖 ∈ A𝑖 (𝑦) \
{
𝑎𝑖

}
.

(i) Action profile 𝑎 has individual full rank in state 𝑦 if rank 𝑀 𝑖
𝑦 (𝑎) = |A𝑖 (𝑦) |−1 for 𝑖 = 1, 2.

(ii) The public signal has a product structure in state 𝑦 if span 𝑀1
𝑦 (𝑎) ⊥ span 𝑀2

𝑦 (𝑎) for all 𝑎.

The individual full rank condition guarantees that 𝑀 𝑖
𝑦 (𝑎) is invertible, hence there exists 𝛽𝑖

that solves (6) with equality for any 𝑎 and 𝛿. If an action profile has individual full rank, then
it is enforceable and incentives from state transitions can be compensated through incentives
within the state. It turns out that the latter condition is relevant to establish regularity of
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the optimality equations; see Assumption 1.(ii.b) below. If the public signal has a product
structure, incentives for the two players can be provided along separate dimensions.

Assumption 1. In each state 𝑦, exactly one of the following conditions is satisfied:

(i) The public signal is uninformative in state 𝑦, i.e., 𝜇(𝑦, 𝑎) is constant across 𝑎.

(ii) All of the following conditions are satisfied, where 𝛼 refers to a mixed action profile
in general, or to a pure action profile if players are restricted to use pure strategies:

(a) The public signal has a product structure in state 𝑦.

(b) Incentives from state transitions can be compensated within the state: for any
enforceable action profile 𝛼 and any 𝛿, there exists 𝛽 such that (𝛽, 𝛿) enforces 𝛼.

(c) Best responses are enforceable: for any enforceable action profile 𝛼, any 𝛿, and
any player 𝑖, there exist 𝛼̃𝑖 and 𝛽 with 𝛽𝑖 = 0 such that (𝛽, 𝛿) enforces (𝛼̃𝑖, 𝛼−𝑖).

The following are sufficient conditions on game primitives for Assumption 1 to hold.

Lemma 4.5. Suppose that Assumption 1.(ii.a) holds in state 𝑦. Then Assumptions 1.(ii.b)

and (ii.c) also hold if for both players 𝑖, either of the following conditions are satisfied:

(i) 𝑀 𝑖
𝑦 (𝑎) has individual full rank for any action profile 𝑎 ∈ A(𝑦).

(ii) There exists an embedding of A𝑖 (𝑦) into R such that for any 𝑎−𝑖, both 𝜆(𝑦, 𝑎) and

𝜇(𝑦, 𝑎) are affine in 𝑎𝑖, with 𝜇(𝑦, 𝑎) non-constant, and 𝑔𝑖 (𝑦, 𝑎) is strictly concave in 𝑎𝑖.

For the characterization of the PPE payoff correspondence in behavior strategies, but not
for pure strategies, we make the following assumption about state transitions.

Assumption 2. Suppose that in each state 𝑦, either of the following conditions is satisfied:

(i) State transitions satisfy a product structure: Y \ {𝑦} can be partitioned into Y1 and Y2

such that player 𝑖’s actions affect the frequency of transitions only to states in Y𝑖.

(ii) There is a single successor state 𝑦′,
��A𝑖 (𝑦)

�� = {
𝑎𝑖1, 𝑎

𝑖
2
}

for 𝑖 = 1, 2, and 𝜆 is monotone:
𝜆𝑦,𝑦′ (𝑎𝑖1, 𝑎

−𝑖
1 ) − 𝜆𝑦,𝑦′ (𝑎𝑖2, 𝑎

−𝑖
1 ) and 𝜆𝑦,𝑦′ (𝑎𝑖1, 𝑎

−𝑖
2 ) − 𝜆𝑦,𝑦′ (𝑎𝑖2, 𝑎

−𝑖
2 ) have the same sign.

4.2 Self-generation

To motivate the local construction of PPE in our model, it will be useful to recap its analogue
in discrete time, introduced in Abreu, Pearce, and Stacchetti (1990). In each period, incentives
for the chosen action profile are provided through the promise of a continuation value from

13



some family of payoff sets W = (W𝑦)𝑦∈Y , where the continuation value lies in W𝑦 if the
next state is 𝑦. The concept of self-generation ensures that these promises are credible by
imposing that any payoff pair 𝑤 ∈ W𝑦 is itself attainable through a current-period action
profile 𝛼, enforced by a continuation promise on W . Then an infinite concatenation of these
action profiles delivers the promised values in an enforceable way: it is a PPE. In continuous
time, this local construction corresponds to finding enforceable solutions to SDE (5) that
remain within the same family of payoff sets at all times. Contrary to discrete time, there is
no minimal time increment, at which we can concatenate the solution. There is, however, a
suitable sequence of stopping times that permits an iterative construction of equilibria. Let
𝜏𝑛 denote the time of the 𝑛th state transition. Since interarrival times of state changes are
exponentially distributed, it follows that 𝜏𝑛 → ∞ a.s. Thus, if we can construct locally
enforceable solutions to (5) between state transitions, a countable concatenation is a PPE.

Definition 4.6.

(i) A family of payoff sets W = (W𝑦)𝑦∈Y generates a family of payoff sets X = (X𝑦)𝑦∈Y if
for each 𝑦 and 𝑤 ∈ X𝑦, there exists (𝑊, 𝑆, 𝐴, 𝛽, 𝛿, 𝑀) on a probability space (Ω,F , 𝑃)
with 𝑆0 = 𝑦 and𝑊0 = 𝑤 such that on J0, 𝜏1K := {(𝜔, 𝑡) ∈ Ω × [0,∞) | 0 ≤ 𝑡 ≤ 𝜏1(𝜔)},
the processes satisfy (5), (𝛽, 𝛿) enforces 𝐴, 𝑊 ∈ X𝑦 before time 𝜏1 and 𝑊𝜏1 ∈W𝑆𝜏1

.

(ii) W pure-strategy generatesX if for any 𝑦 and𝑤 ∈ X𝑦, a solution exists in pure strategies.

(iii) A family W is (pure-strategy) self-generating if it (pure-strategy) generates itself.

W generates X if continuation values in W at time 𝜏1 are able to enforceably sustain any
payoffs in X . If W is self-generating, those continuation values can themselves be sustained
through another promise in W at the time of the next state transition, and so on. A countable
concatenation thus yields a PPE by Lemma 4.3, giving rise to the following lemma.

Lemma 4.7. E is the largest bounded family of self-generating payoff sets.

For the local construction of equilibria and the characterization of E , it will be helpful
to study the largest family of bounded payoff sets B(W) = (B𝑦 (W))𝑦∈Y that is generated
by W .4 As usual, let B𝑝 (W) denote its pure-strategy analogue. The following lemma relates
the operators B and B𝑝 to self-generation and the family of PPE payoffs.

4If X and X ′ are generated by W , their state-wise union is as well, hence the largest family is well defined.
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Lemma 4.8. The operator B has the following properties:

(i) A bounded family W is self-generating only if W𝑦 ⊆ B𝑦 (W) for each state 𝑦.

(ii) If W𝑦 ⊆ B𝑦 (W) for every state 𝑦, then B(W) is self-generating.

(iii) B𝑦 (E) = E (𝑦) for any state 𝑦.

(iv) If 𝑦 is absorbing, then B𝑦 (W) = E (𝑦) for any W .

Moreover, the operator B𝑝 satisfies the analogue properties with E replaced by E 𝑝.

Statement (i) is simply a restatement that B(W) is the largest bounded family generated
by W . Statement (ii) permits the concatenation procedure described above: any 𝑤 ∈ B𝑦 (W)
can be attained by an enforceable strategy profile with a continuation value in W𝑆𝜏1

at the
time 𝜏1. If W𝑆𝜏1

⊆ B𝑆𝜏1
(W), the strategies can be extended in an enforceable way until the

second state transition, and so on. Statements (i) and (iii) together imply that E is the largest
bounded fixed point of B. The first three statements of Lemma 4.8 highlight the similarities
of B with the standard set operator from Abreu et al. (1990). These similarities arise because
incentives at state transitions have an inherently discrete character in games with finitely
many states. However, B must also capture incentives between state transitions, which give
rise to a local description of its boundary. As statement (iv) highlights, those characterize
equilibrium payoffs explicitly in absorbing states where no more state transitions occur.

Our main goal in Sections 5–7 is to characterize the boundary of B𝑦 (W) for an arbitrary
family of payoff sets W . In some games, this yields an explicit description of the PPE payoff
correspondence. For instance, in repeated games we recover the main result of Sannikov
(2007) by statement (iv) of Lemma 4.8. In absorbing games with initial state 𝑦0, statement (iv)
applies to all absorbing states, and statement (iii) characterizes E (𝑦0) by applying B𝑦0 to
(E (𝑦))𝑦≠𝑦0 . More generally, when each state is visited at most once, the characterization of
B yields an explicit characterization of E . When each state can be visited more than once,
we obtain a fixed-point characterization, describing the boundary of each E (𝑦) as ODEs that
depend on E (𝑦′) for states 𝑦′ ≠ 𝑦. For such games, the following algorithm, based on the fact
that E is the largest bounded fixed point of B, allows us to approximate E . Replacing B𝑝 in
the iterative procedure below yields an approximation of E 𝑝 instead.

Proposition 4.9. Let W0 = (W0,𝑦)𝑦∈Y be the family of payoff sets with W0,𝑦 = V∗
0 for

every 𝑦 ∈ Y . Define the sequence (W𝑛)𝑛≥0 iteratively via W𝑛 = B(W𝑛−1) for 𝑛 ≥ 1. Then

(W𝑛,𝑦)𝑛≥0 is decreasing in the set-inclusion sense for every 𝑦 ∈ Y with
⋂

𝑛≥0 W𝑛,𝑦 = E (𝑦).
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W𝑦′

B𝑦 (W)

𝑤

𝑔(𝑦, 𝐴𝑡 ) + 𝛿𝑡𝜆(𝑦, 𝐴𝑡 )

𝛽𝑡 (𝜎(𝑦) d𝑍𝑡 − 𝜇(𝑦, 𝐴𝑡 ) d𝑡)

𝑁𝑤

𝑟𝛿(𝑦) d𝐽𝑦𝑡𝑟𝛿(𝑦) d𝐽𝑦𝑡

drift

Figure 4: Restrictions on incentives at extremal payoff pairs 𝑤 ∈ 𝜕B𝑦 (W).

5 Heuristic derivation

This section provides a heuristic derivation of 𝜕B𝑦 (W) in order to motivate the four types
of boundary payoffs that may arise and to highlight the connection among them. The char-
acterization of stationary payoffs and continuation-binding payoffs are deferred to Sections 6
and 7, respectively, because they depend on which specific assumptions are satisfied.

Throughout the remainder of the paper, we fix a state 𝑦 and a family W = (W𝑦′)𝑦′∈Y of
compact and convex payoff setsW𝑦′ . For the heuristic derivation only, suppose thatB𝑦 (W) is
closed so that any boundary payoff pair 𝑤 is attainable by an enforceable solution to (5). This
places the following restrictions on the continuation promise (𝛽, 𝛿) used to incentivize action
profile 𝛼 at boundary payoff 𝑤, where 𝑁 is an arbitrary outward normal vector at 𝑤:

(I1) The drift points inwards: 𝑁⊤(𝑔(𝑦, 𝛼) + 𝛿𝜆(𝑦, 𝛼) − 𝑤) ≥ 0.

(I2) The public signal is used to transfer values tangentially to the set: 𝑁⊤𝛽 = 0.

(I3) 𝛿 is W-feasible: 𝑤 + 𝑟𝛿(𝑦′) ∈ W𝑦′ for any state 𝑦′.

See Figure 4 for an illustration of these restrictions. Restriction (I2) arises because the public
signal has unbounded variation: if the continuation value moved non-tangentially with the
public signal, it would escape B𝑦 (W) immediately. On the boundary, the public signal is thus
used exclusively for tangential value transfers. Restriction (I3) is feasibility in the continuation
state. Lemma 5.2 shows that restriction (I1) corresponds to feasibility in the current state.

Definition 5.1. Payoff 𝑤 is W-feasible in state 𝑦 if there exist 𝛼 and 𝛿 with 𝑤 + 𝑟𝛿(𝑦′) ∈ W𝑦′

for each 𝑦′ ∈ Y such that 𝑤 = 𝑔(𝑦, 𝛼) + 𝛿𝜆(𝑦, 𝛼). We say such (𝛼, 𝛿) decomposes 𝑤 on W
in state 𝑦. Denote by V𝑦 (𝑟;W) or V𝑦 (W) the convex hull of all W-feasible payoffs in state 𝑦.

Lemma 5.2. A setX𝑦 is contained in V𝑦 (W) if and only if for every 𝑤 ∈ 𝜕X𝑦 and outward nor-

mal 𝑁 , there exist (𝛼, 𝛿) that satisfy (I1) and (I3). In particular, B𝑝
𝑦 (W) ⊆ B𝑦 (W) ⊆ V𝑦 (W).
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Non-stationary strategies cannot attain payoffs outside of V𝑦 (W) because (I1) and (I3)
are at odds with each other there: the larger 𝛿(𝑦′) has to be to reach W𝑦′ (in some direction),
the stronger is the drift in the opposite direction. Thus, (I1) can be interpreted as feasibility in
the current state. We refer to continuation promises that satisfy all restrictions as follows:

⋄ Ξ𝑦,𝛼 (𝑤, 𝑁,W) is the set of all continuation promises (𝛽, 𝛿) that enforce 𝛼 in state 𝑦

that satisfy (I1)–(I3). Such (𝛽, 𝛿) are said to W-restricted-enforce 𝛼 at (𝑤, 𝑁).

⋄ Ψ𝑦,𝛼 (𝑤,W) is the set of all W-feasible 𝛿 that enforce action profile 𝛼 with 𝛽 = 0.

We may omit the dependence on 𝑦 and W if they are clear from context.

5.1 The four kinds of boundary payoffs

Because the public signal is driven by Brownian motion, players transfer value very rapidly.
At payoff pairs where the boundary is strictly curved, these transfers lie above the tangent at
every instant, causing the continuation value to drift away from the boundary. It follows from
Itō’s formula that the strength of this outward drift is 𝑟2

2 𝜅𝑦 (𝑤)∥𝑇𝑤
⊤𝛽𝜎(𝑦)∥2, proportional to the

curvature 𝜅𝑦 (𝑤) at 𝑤. For the continuation value to remain within B𝑦 (W), this outward drift
has to be compensated by the inward drift characterized in (I1), i.e., it is necessary that there
exist some action profile 𝛼 and continuation promise (𝛽, 𝛿) ∈ Ξ𝑦,𝛼 (𝑤, 𝑁,W) that satisfy

𝑟2

2
𝜅𝑦 (𝑤)∥𝑇𝑤⊤𝛽𝜎(𝑦)∥2 ≤ 𝑟𝑁⊤(𝑔(𝑦, 𝛼) + 𝛿𝜆(𝑦, 𝛼) − 𝑤). (7)

Suppose first that (7) binds, i.e., there are no 𝛼 and (𝛽, 𝛿) ∈ Ξ𝑦,𝛼 (𝑤, 𝑁,W) for which the
inequality is strict. The inequality may bind in one of three ways. First, 𝑤 may decomposed
by some (𝛼, 𝛿), hence the continuation value has no drift and (7) implies 𝛽 = 0. In particular,
the continuation value is locally constant, and we call such payoffs stationary.

Definition 5.3. A payoff pair 𝑤 isW-stationary in state 𝑦 if there exist 𝛼 and 𝛿 ∈ Ψ𝑦,𝛼 (𝑤,W)
with 𝑤 = 𝑔(𝑦, 𝛼) + 𝛿𝜆(𝑦, 𝛼). We denote by S𝑦 (W) the set of all such payoff pairs, by S 𝑝

𝑦 (W)
its restriction to pure actions, and S (W) = (S𝑦 (W))𝑦∈Y as well as S 𝑝 (W) = (S 𝑝

𝑦 (W))𝑦∈Y .

Second, the continuation value may have a non-zero tangential drift, hence (7) still
requires that incentives are provided through state transitions exclusively. Rewriting the
binding inequality (7) with 𝛽 = 0 yields the state-transition optimality equation

𝑁𝑤
⊤𝑤 = max

𝛼
max

𝛿∈Ψ𝑦,𝛼 (𝑤,W)
𝑁𝑤

⊤(𝑔(𝑦, 𝛼) + 𝛿𝜆(𝑦, 𝛼)), (8)
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where the maximization is taken over all action profiles 𝛼 for whichΨ𝑦,𝛼 (𝑤,W) is non-empty.
Strategy profiles that attain boundary payoffs characterized by (8) condition on state transitions
and time. If feasibility were the only concern, the highest weighted sum of payoffs 𝑁𝑤

⊤𝑤

would be attained for the highest-feasible continuation promise 𝛿𝑤 that maximizes 𝑁𝑤
⊤𝛿𝑤 (𝑦′)

in each successor state 𝑦′ for the same payoff weights 𝑁𝑤. Equation (8) shows that when
incentives are taken into account, the weighted sum of payoffs is maximized in 𝛼 and 𝛿 that
maximize three equally weighted objectives: the expected flow payoff received 𝑁𝑤

⊤𝑔(𝑦, 𝛼),
the expected value of future opportunities 𝑁𝑤

⊤𝛿𝑤𝜆(𝑦, 𝛼), and (the negative of) the expected
cost of incentives 𝑁𝑤

⊤(𝛿 − 𝛿𝑤)𝜆(𝑦, 𝛼); see also Figure 1.

Third, incentives may be provided through both state transitions and the public signal.
Solving the binding inequality (7) for the curvature yields the optimality equation

𝜅𝑦 (𝑤) = max
𝛼

max
(𝛽,𝛿)∈Ξ𝑦,𝛼 (𝑤,𝑁𝑤 ,W)

2𝑁𝑤
⊤(𝑔(𝑦, 𝛼) + 𝛿𝜆(𝑦, 𝛼) − 𝑤)

𝑟 ∥𝑇𝑤⊤𝛽𝜎(𝑦)∥2 . (9)

Equation (9) characterizes the optimal trade-off between incentives provided through state
transitions and the public signal. Due to Assumption 1.(ii.b), it is always possible to attach
the highest-feasible continuation promise 𝛿𝑤 to state transitions and provide all incentives
through tangential transfers. The optimality equation shows that this may not be optimal for
impatient players due to the noise in the signal: the tangential transfers entail a cost equal to the
inward drift needed to offset them, which scales quadratically in the size of the transfers.

If the public signal is used to provide incentives, the boundary must be smooth because (I2)
has to hold for each outward normal vector, hence 𝛽 ≠ 0 implies that the outward normal
vector 𝑁𝑤 to B𝑦 (W) at 𝑤 is unique. The optimality equation is thus a second-order ODE in
the state 𝑤, its first derivative 𝑁𝑤, and its second derivative 𝜅𝑦 (𝑤). We show in Appendix F.2
that its solutions are unique and continuous in initial conditions. The use of the notation 𝑁𝑤

in the state-transition optimality equation (8), suggesting uniqueness of the normal vector,
requires some justification. We show in Section 7 that the set of restricted-enforceable
action profiles changes discontinuously only for payoffs in a set K𝑦 (W) of measure zero, the
so-called continuation-binding payoffs, defined formally in Section 7. Outside of this set,
solutions to the first-order ODE (8) are smooth and continuous in initial conditions.

Solutions to either optimality equation have the following very desirable property that
helps us characterize the boundary of B𝑦 (W) even when (7) does not bind.
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𝜕B𝑦 (W)

𝑁𝑤

C

𝑁 ′

C′C′
𝑤

𝑔(𝑦, 𝛼𝑤) + 𝛿𝑤𝜆(𝑦, 𝛼𝑤)

𝜕B𝑦 (W)C

𝑔(𝑦, 𝛼𝑣) + 𝛿𝑣𝜆(𝑦, 𝛼𝑣)
drift 𝑤 𝑣𝑣

Figure 5: Perturbation arguments that motivate the optimality equations.

Lemma 5.4. Let C be a smooth solution to either (8) or (9), and let 𝛼∗(𝑤), 𝛽∗(𝑤), and

𝛿∗(𝑤) denote the corresponding maximizers at 𝑤. Call an end point 𝑣 of C reachable if the

solution 𝑊 to SDE (5) with 𝐴 = 𝛼∗(𝑊), 𝛽 = 𝛽∗(𝑊), and 𝛿 = 𝛿∗(𝑊) reaches 𝑣 with positive

probability.5 If all reachable endpoints of C are in B𝑦 (W), then C ⊆ B𝑦 (W).

The solution 𝑊 remains on C because the inward and outward drift (relative to 𝑁𝑤)
precisely offset each other. Thus,𝑊 is a restricted-enforceable solution to (5) that remains onC
until either an end point of C is reached or a state transition occurs. If an end point 𝑣 ∈ B𝑦 (W)
is reached before a state transition occurs, then by definition it is attainable by a restricted-
enforceable solution (𝑊′, 𝐴′, 𝛽′, 𝛿′) to (5) that remains inB𝑦 (W) until the next state transition.
Thus, the concatenation of the solutions attains 𝑤 and remains in C ∪ B𝑦 (W). In particular,
C ∪ B𝑦 (W) is generated by W , hence maximality of B𝑦 (W) implies C ⊆ B𝑦 (W).

Finally, consider the case where (7) does not bind at a boundary payoff 𝑤, i.e., there exist
some outward normal vector 𝑁 , an action profile 𝛼𝑤, and incentives (𝛽𝑤, 𝛿𝑤) ∈ Ξ𝛼𝑤

(𝑤, 𝑁)
for which the inequality is strict. Suppose first that all such incentives satisfy 𝛽𝑤 ≠ 0.
Then the curvature of 𝜕B𝑦 (W) at 𝑤 is strictly smaller than 𝜅𝑦 (𝑤) given by the optimality
equation. A solution C to (9) starting at (𝑤, 𝑁𝑤) must therefore fall into the interior ofB𝑦 (W).
Consequently, a solution C′ for slightly rotated initial conditions leaves and re-enters B𝑦 (W)
as illustrated in the left panel of Figure 5, a contradiction to Lemma 5.4. Suppose next that
incentives through state transitions are sufficient to enforce 𝛼𝑤 with strict inward drift. Then
a solution C to the state-transition optimality equation (8) started at 𝑤 must fall into the
interior of B𝑦 (W). Because (8) has smooth solutions outside of K𝑦 (W), this can happen
only at 𝑤 ∈ K𝑦 (W). Otherwise, there is a smooth extension C′ of C that solves (8) and
attains payoffs slightly outside of B𝑦 (W) as illustrated in the right panel of Figure 5, again a
contradiction to Lemma 5.4. We conclude that (7) must bind everywhere on the boundary of
B𝑦 (W) except at payoffs in K𝑦 (W), where a solution to (8) fails to be smooth.

5Only a single end point of solutions to (8) is reachable because (5) is deterministic if 𝛽∗ ≡ 0 and 𝑀 ≡ 0
while no state transition occurs. Both end points of solutions to (9) are reachable with positive probability.
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5.2 Conditioning on the support of mixed actions

To fill in the details to Section 5.1, we will condition on the support of the players’ mixed
actions in Sections 6 and 7. We introduce the relevant notation here because it will be used
in both sections. Throughout the rest of the paper, A⋄ =A1

⋄ ×A2
⋄ will refer to a product set

with A𝑖
⋄ ⊆A𝑖 (𝑦). Continuation promise 𝛿 enforces 𝛼 with support A⋄ if and only if

𝑔𝑖 (𝑦, 𝑎𝑖, 𝛼−𝑖) + 𝛿𝑖𝜆(𝑦, 𝑎𝑖, 𝛼−𝑖) ≥ 𝑔𝑖 (𝑦, 𝑎̃𝑖, 𝛼−𝑖) + 𝛿𝑖𝜆(𝑦, 𝑎̃𝑖, 𝛼−𝑖) (10)

for all 𝑎𝑖 ∈A𝑖
⋄, all 𝑎̃𝑖 ≠ 𝑎𝑖, and 𝑖 = 1, 2. Given 𝛿𝑖, player 𝑖 must be indifferent between all actions

in A𝑖
⋄, and must weakly prefer them over all actions outside of the support. Note that the set

of player 𝑖’s incentives depends on the precise mixture 𝛼−𝑖 of their opponent, but it depends
on their own mixture only through its support. We will use the following notation:

⋄ Ψ𝑦,A⋄ (𝛼) and Ψ𝑦,A⋄ denotes the set of all 𝛿 that satisfy (10) for both players. The
former for given 𝛼, the latter for some 𝛼 supported on A⋄.

⋄ Υ𝑦,A⋄ (𝑤,W) is the set of all (𝛼, 𝛿) with supp(𝛼) ⊆A⋄ and W-feasible 𝛿 ∈Ψ𝑦,A⋄ (𝛼).

We again omit the dependence on 𝑦 andW if they are clear from context. While mixed actions
break the polygon structure of solutions to (10) in general, it holds under Assumption 2.

Lemma 5.5. If A⋄ is a singleton or Assumption 2 holds, ΨA⋄ is a closed convex polyhedron.

6 State-order dependent strategies and stationary payoffs

6.1 Stationary payoffs with a single successor state

Fix a state 𝑦 with a unique successor state 𝑦′ as in the regime-change game of Section 3, which
we will use for illustration. A key simplification in this setting is that 𝛿𝜆(𝑦, 𝑎) = 𝛿(𝑦′)𝜆𝑦,𝑦′ (𝑎),
hence the provided incentives 𝛿𝑖 (𝑦′) are one-dimensional. As in Section 5.2, we will condition
on the support of the chosen action profiles. For any supportA⋄ ⊆ A(𝑦), letS𝑦,A⋄ (W) denote
the set of all payoff pairs 𝑤 that can be decomposed by some pair (𝛼, 𝛿) ∈ ΥA⋄ (𝑤).

We begin with pure action profiles. Since a state transition has a payoff impact of 𝑟𝛿(𝑦′),
the set of continuation payoffs in W𝑦′ reachable from some 𝑤 ∈ S𝑦,𝑎 (W) is the set

X𝑦,𝑎 (W) := X𝑦,𝑎 ∩W𝑦′ , where X𝑦,𝑎 := 𝑔(𝑦, 𝑎) + (𝜆𝑦,𝑦′ (𝑎) + 𝑟)Ψ𝑦,𝑎 .

BecauseΨ𝑦,𝑎 is an intersection of half-spaces, X𝑦,𝑎 (W) is easily computed as the intersection
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of two convex sets. Payoffs in S𝑦,𝑎 (W) are the expected values of future payoffs in X𝑦,𝑎 (W)
and the current flow payoff 𝑔(𝑦, 𝑎), hence S𝑦,𝑎 (W) is the convex combination

S𝑦,𝑎 (W) = 𝑟

𝑟 + 𝜆𝑦,𝑦′ (𝑎)
𝑔(𝑦, 𝑎) +

𝜆𝑦,𝑦′ (𝑎)
𝑟 + 𝜆𝑦,𝑦′ (𝑎)

X𝑦,𝑎 (W).

Geometrically, this corresponds to shrinking X𝑦,𝑎 (W) towards 𝑔(𝑦, 𝑎); see the left panel in
Figure 6. The set of all pure-strategy stationary payoffs is thenS 𝑝

𝑦 (W) =
⋃

𝑎∈A(𝑦) S𝑦,𝑎 (W).

Example 1. We illustrate this construction by computing S 𝑝
𝑦1 (V∗

0 ) in the regime-change game.
We first compute S𝑦1,𝑎 (W) for the cooperative action profile 𝑎 = (𝐵, 𝑆). The incumbent is
willing to play 𝐵 as long as state transitions are not too costly; otherwise a deviation to 𝐴

would be profitable to reduce their frequency. The non-incumbent is willing to play 𝑆 as
long as state transitions are not too rewarding; otherwise a deviation to 𝐼 would be profitable
to increase their frequency. Specifically, Ψ𝑦1,(𝐵,𝑆) is the set of all 𝛿 with 𝛿1(𝑦2) ≥ −2 and
𝛿2(𝑦2) ≤ 5/8. To compute X𝑦1,(𝐵,𝑆) , we scale this set by a factor of 𝜆𝑦1,𝑦2 (𝑎) + 𝑟 = 2 and shift
it by 𝑔(𝑦1, 𝑎) = (4, 2); see the left panel in Figure 6. We then shrink X𝑦1,(𝐵,𝑆) ∩ V∗

0 towards
𝑔(𝑦1, 𝑎) by a factor of 𝜆𝑦1,𝑦2 (𝑎)/(𝜆𝑦1,𝑦2 (𝑎) + 𝑟) = 1/2. Repeating this construction for all
pure action profiles and states yields S 𝑝 (V∗

0 ) shown in the middle panel of Figure 6.

Next, we characterize the mixed-action stationary payoffs under Assumption 2.(ii), that is,
when

��A𝑖 (𝑦)
�� = 2 and 𝜆 is monotone. Monotonicity allows us to label A𝑖 (𝑦) =

{
𝑎𝑖1, 𝑎

𝑖
2
}

so
that 𝜆(𝑦, 𝑎𝑖1, 𝛼

−𝑖) ≥ 𝜆(𝑦, 𝑎𝑖2, 𝛼
−𝑖) for any 𝛼−𝑖. We say that 𝜆 is strictly monotone for player 𝑖 if

the inequality is strict. Promise 𝛿𝑖 makes player 𝑖 indifferent among both pure actions if

𝑔𝑖 (𝑦, 𝑎𝑖1, 𝛼
−𝑖) + 𝛿𝑖𝜆(𝑦, 𝑎𝑖1, 𝛼

−𝑖) = 𝑔𝑖 (𝑦, 𝑎𝑖2, 𝛼
−𝑖) + 𝛿𝑖𝜆(𝑦, 𝑎𝑖2, 𝛼

−𝑖). (11)

Strict monotonicity implies that there is a unique 𝛿𝑖∗(𝛼−𝑖) such that (11) holds. If 𝜆 is not
strictly monotone for player 𝑖 under Assumption 2.(ii), then player 𝑖 has no impact on state
transitions. In that case, 𝛼 is enforceable if and only if 𝛼𝑖 is a best response to 𝛼−𝑖.

Suppose first that 𝜆 is strictly monotone for both players. An upper bound for S𝑦,A(W)
is the set S0

𝑦,A of all payoffs that can be decomposed by (𝛼, 𝛿) without requiring that 𝛿 be
feasible. It follows from (11) that 𝑔𝑖 (𝑦, 𝛼) + 𝛿𝑖∗(𝛼−𝑖)𝜆(𝑦, 𝛼) depends on 𝛼 only through 𝛼−𝑖,
and it does so monotonically. Thus, S0

𝑦,A is a rectangle whose corners are attained by the pure
action profiles; see the right panel in Figure 6. LetX𝑦,A denote the set of all 𝑣𝑦′ that satisfy

𝑣𝑦′ = 𝑔(𝑦, 𝛼) + 𝛿∗(𝛼)𝜆(𝑦, 𝛼) + 𝑟𝛿∗(𝛼, 𝑦′) (12)
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𝑤2

𝑤1
X𝑦1, (𝐵,𝑆)X𝑦1, (𝐵,𝑆)

V∗
0

𝑔(𝑦1, 𝐵, 𝑆)
S𝑦1, (𝐵,𝑆) (V∗

0 )

𝑤2

𝑤1

S 𝑝
𝑦1 (V∗

0 )

S 𝑝
𝑦2 (V∗

0 )
𝑤2

𝑤1

S𝑦1,A(V∗
0 )S𝑦1,A(V∗
0 )

X𝑦1,A

S0
𝑦1,AS0
𝑦1,A

Figure 6: Construction of S 𝑝 (V∗
0 ) and S (V∗

0 ) in the regime-change game.

for some mixed action profile 𝛼, i.e., the set of continuation payoffs 𝑣𝑦′ reachable from S0
𝑦,A.

Note thatX𝑦,A is again a rectangle, hence the feasible continuation setX𝑦,A(W) =X𝑦,A∩W𝑦′

is easily computed; see the right panel in Figure 6. Different from the pure-strategy case, the
map from S𝑦,A(W) to X𝑦,A(W) is not affine because 𝛿∗(𝛼) depends on 𝛼. Instead, extremal
payoffs in S𝑦,A are either extremal in S0

𝑦,A(W) or they satisfy (12) for some 𝑣 ∈ 𝜕W𝑦′ .
Since (12) is a quadratic equation in each coordinate, it can be solved explicitly for boundary
segments in 𝜕W𝑦′ to trace out the boundary of S𝑦,A(W). Given that (12) is a quadratic, a
single segment in 𝜕W𝑦′ may correspond to multiple boundary segments in S𝑦,A(W).

Example 2. To compute S𝑦1,A(V∗
0 ) in the regime-change game, let 𝛼1 and 𝛼2 denote the

probabilities assigned to actions 𝐴 and 𝐼, respectively. A brief computation yields

𝛿1
∗ (𝛼2) = −2

1 + 8𝛼2 , 𝛿2
∗ (𝛼1) = 5

8 − 4𝛼1 , 𝑔(𝑦1, 𝛼) + 𝛿∗(𝛼)𝜆(𝑦1, 𝛼) =
[

2 − 2𝛼2

2.625 − 2𝛼1

]
. (13)

An upper bound for S𝑦1,A(V∗
0 ) is thus certainly the square S0

𝑦1,A with vertices (0, 0.625),
(0, 2.625), (2, 0.625), and (2, 2.625), indicated in yellow in the right panel of Figure 6. To
find the extremal payoffs of S𝑦1,A(V∗

0 ), we solve the quadratic equation (12) for 𝑣 in the
intersection X𝑦1,A ∩ 𝜕V∗

0 indicated in red. The quadratic has two solutions in this example;
see the zoom-in. Lemma 6.1 below implies that S𝑦 (V∗

0 ) = S 𝑝
𝑦 (V∗

0 ) ∪ S𝑦,A(V∗
0 ).

Lemma 6.1. Suppose Assumption 2.(ii) holds with strictly monotone 𝜆. ThenS𝑦,A𝑖×{𝑎−𝑖} (W)
is conv

{
𝑤 ∈ S𝑦,A(W) ∪ S𝑦,(1,𝑎−𝑖) (W) ∪ S𝑦,(0,𝑎−𝑖) (W)

�� 𝑤𝑖 = 𝑔𝑖 (𝑦, 𝑎) + 𝛿𝑖∗(𝑎−𝑖)𝜆(𝑦, 𝑎)
}
.

Suppose next that 𝜆 is strictly monotone for player 1 but not for player 2, and consider
first mixtures with full support. Since no dynamic incentives can be provided to player 2,
this requires that player 2 does not have a strictly dominant action. Player 2 is indifferent
only against one specific action 𝛼1

∗ , hence enforceability fixes 𝛼1 but places no constraints
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on 𝛿2(𝑦′).6 Thus, (12) is instead an affine equation

𝑣2
𝑦′ = 𝑔2(𝑦, 𝛼1

∗ , 𝛼
2) + 𝛿2𝜆(𝑦, 𝛼1

∗) + 𝑟𝛿2(𝑦′) (14)

in the free variable 𝛿2(𝑦′) for player 2. As above, we first compute S0
𝑦,A, and solve (12) for

player 1 and (14) for player 2 for any boundary segments 𝜕W that intersect S0
𝑦,A.

The same approach works for one-sided mixtures with support A⋄ = A1 ×
{
𝑎2

0
}
. We

solve equations (12) and (14) for 𝛼1 and 𝛿2, subject to the additional constraint that 𝑎2
0 is a

best response to 𝛼1. Finally, for one-sided mixtures with support A⋄ =
{
𝑎1

0
}
×A2, incentives

𝛿1 are no longer unique. While both 𝛼2 and 𝛿1 affect the decomposition of player 1’s
payoffs, equation (14) for player 1 is affine in (𝛼2, 𝛿1) because player 2 has no impact on state
transitions. Thus, we solve a pair of affine equations (14) as in the pure-action case.

Finally, if 𝜆 is constant, only static Nash profiles are enforceable, hence

S𝑦 (W) =
⋃

𝛼 static Nash

𝑟

𝑟 + 𝜆𝑦,𝑦′ (𝛼)
𝑔(𝑦, 𝛼) +

𝜆𝑦,𝑦′ (𝛼)
𝑟 + 𝜆𝑦,𝑦′ (𝛼)

W𝑦′ .

6.2 Stationary payoffs with multiple successor states

For a pure action profile 𝑎, the construction of S𝑦,𝑎 (W) remains similar, except that we now
work in the space of incentives rather than in the payoff space. Let 𝐹𝑦,𝑎 (𝑦′,W) denote the
set of all 𝛿 that satisfy 𝑔(𝑦, 𝑎) + 𝛿𝜆(𝑦, 𝑎) + 𝑟𝛿(𝑦′) ∈ W𝑦′ . Note that 𝐹𝑦,𝑎 (𝑦′,W) is convex as
the pre-image of a convex set under an affine map, hence so is

S𝑦,𝑎 (W) = 𝑔(𝑦, 𝑎) +
(
Ψ𝑦,𝑎 ∩

⋂
𝑦′ 𝐹𝑦,𝑎 (𝑦′,W)

)
𝜆(𝑦, 𝑎). (15)

This set can be computed efficiently through a linear program. Alternatively, for a polygon
approximation W′ of W , each set 𝐹𝑦,𝑎 (𝑦′,W′) is a polyhedron, hence S𝑦,𝑎 (W′) − 𝑔(𝑦, 𝑎) is
a polygon whose vertices are projections of the vertices of Ψ𝑦,𝑎 ∩

⋂
𝑦′ 𝐹𝑦,𝑎 (𝑦′,W′).

Equation (15) remains valid for mixed action profiles.7 While one can compute S𝑦,A⋄ (W)
through (15) for a sufficiently fine grid of mixed actions, doing so is inefficient unless |A⋄| ≤ 2.
The following fixed-point characterization is computationally more efficient when the support

6If player 2 has a weakly dominant action in the stage game, then 𝛼1
∗ is a pure action.

7Specifically, let S𝑦,A⋄ (𝛼0,W) denote the set of all payoffs 𝑤 that are decomposed by (𝛼0, 𝛿) ∈ Υ𝑦,A⋄ (𝑤).
Then S𝑦,A⋄ (𝛼,W) = 𝑔(𝑦, 𝛼) +

(
ΨA⋄ (𝛼) ∩

⋂
𝑦′ 𝐹𝑦,𝛼 (𝑦′,W)

)
𝜆(𝑦, 𝛼) for 𝐹𝑦,𝛼 (𝑦′,W) defined as above.
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is large. Any 𝑤 ∈ S𝑦,A⋄ (W) is a fixed point of the decomposition operator

D𝑦,A⋄ (𝑤) :=
{
𝑣 ∈ R2 �� 𝑣 = 𝑔(𝑦, 𝛼) + 𝛿𝜆(𝑦, 𝛼) for some (𝛼, 𝛿) ∈ Υ𝑦,A⋄ (𝑤)

}
.

We will omit the dependence on 𝑦 if it is clear from context. The setDA⋄ (𝑤) is easily computed
as a bilinear program over a set of convex constraints. DA⋄ has the following properties.

Lemma 6.2.

(i) DA⋄ (𝑤) is compact. Moreover, if A⋄ is a singleton, then DA⋄ (𝑤) is convex.

(ii) If A⋄ is a singleton or Assumption 2 holds, then 𝑤 ↦→ DA⋄ (𝑤) is continuous.

(iii) DA⋄ (𝑤) generally moves in the opposite direction of 𝑤: for any 𝑤, 𝑁 , and 𝑁′ with

𝑁⊤𝑁′ > 0, the function 𝑓 (𝜀) = max𝑣∈DA⋄ (𝑤+𝜀𝑁 ′) 𝑁
⊤𝑣 is eventually non-increasing in 𝜀.

The motivation for property (iii) is the following: a change of 𝜀𝑁′ in the payoff pair
shifts the set of feasible continuation promises 𝛿(𝑦′) by −𝜀/𝑟𝑁′. For any direction 𝑁 with
𝑁⊤𝑁′ > 0, let 𝑣𝑁 denote the payoff that maximizes 𝑁⊤𝑣 over 𝑣 ∈ DA⋄ (𝑤). If only feasibility
constraints bind at 𝑣𝑁 , then the supporting tangent shifts by −𝜀/𝑟𝑁⊤𝑁′, i.e., they decrease
in 𝜀. If only enforceability constraints bind at 𝑣𝑁 , the boundary is locally constant. If both
types of constraints bind at 𝑣𝑁 , the supporting tangent may shift in either direction depending
on how the constraints interact, but eventually the feasibility constraints will dominate.

To compute S𝑦,A⋄ (W), we find some stationary payoff 𝑤0 with a grid search; see Sec-
tion D.3 for alternatives. By property (iii), we can find an extremal stationary payoff by shift-
ing 𝑤0 in an arbitrary direction 𝑁 until 𝑤0 + 𝜀𝑁 is extremal in DA⋄ (𝑤0 + 𝜀𝑁). From there,
we can solve for 𝜕S𝑦,A⋄ (W) with the following differential-inclusion type result.

Lemma 6.3. The exterior boundary of any connected component of S𝑦,A⋄ (W) is locally the

largest closed curve C that satisfies 𝑤 ∈ 𝜕D𝑦,A⋄ (𝑤) for all 𝑤 ∈ C.

Lemma 6.3 establishes that the tangent direction ¤𝑤 is the extremal direction for which
𝑤 remains on the boundary of DA⋄ (𝑤). We elaborate how to implement it numerically in
Section D.3. The following lemma provides sufficient conditions for S𝑦,A⋄ (W) to be simply
connected, i.e., for it to consist of a single connected component with no holes. Then its
boundary is a single closed curve that solves the inclusion.
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Lemma 6.4. Suppose that either Assumption 2.(ii) is satisfied or Assumption 2.(i) and

Condition (ii) of Lemma 4.5 are satisfied such that 𝜆(𝑦, 𝑎) is linear in 𝑎𝑖 for any 𝑎−𝑖. Then

D𝑦,A⋄ (𝑤) and S𝑦,A⋄ (W) have convex coordinate sections, hence they are simply connected.

6.3 State-order dependent equilibria

In a state-order dependent PPE, the continuation value after a state transition must itself be
attainable by a locally constant strategy profile, i.e., it must again be stationary. The restriction
of self-generation to state-order dependent strategies is the following notion.

Definition 6.5. A family of payoff sets W is mutually stationary if for each state 𝑦 ∈ Y and
each payoff pair 𝑤 ∈ W𝑦, there exist 𝛼 and 𝛿 ∈ Ψ𝑦,𝛼 (𝑤,W) with 𝑤 = 𝑔(𝑦, 𝛼) + 𝛿𝜆(𝑦, 𝛼).
We say that W is mutually stationary in pure strategies if, in addition, 𝛼 ∈ A(𝑦).

Lemma 6.6. Fix a family W = (W𝑦)𝑦∈Y of payoff sets.

(i) W is mutually stationary only if W𝑦 ⊆ S𝑦 (W) for each state 𝑦.

(ii) If W𝑦 ⊆ S𝑦 (W) for every state 𝑦, then S (W) is mutually stationary.

The same statements hold for mutual stationarity in pure strategies if S is replaced with S 𝑝.

It follows immediately from the definition of mutual stationarity that S𝑦 (E𝑠) = E𝑠 (𝑦): any
payoff pair in S𝑦 (E𝑠) can be attained by a locally enforceable strategy profile whose continua-
tion values after a state transition are attainable by a state-order dependent equilibrium. Con-
versely, any equilibrium payoff in E𝑠 (𝑦) must be attainable by such a strategy profile.

Lemma 6.7. E𝑠 is the largest family of bounded mutually stationary payoff sets and E 𝑝
𝑠 is the

largest family of bounded payoff sets that are mutually stationary in pure strategies.

Because E𝑠 and E𝑟 are the largest fixed points of the monotone operators S and convS,
respectively, we obtain the following iterative procedure to approximate E𝑠 and E𝑟 .

Proposition 6.8. Set W0
𝑦 = W0

𝑝,𝑦 = V∗
0 for each 𝑦 and iteratively define W𝑛

𝑦 := S𝑦 (W𝑛−1)
and W𝑛

𝑝,𝑦 := S 𝑝
𝑦 (W𝑛−1

𝑝 ) for 𝑛 ≥ 1. Then (W𝑛
𝑦 )𝑛≥0 and (W𝑛

𝑝,𝑦)𝑛≥0 are decreasing in the set-

inclusion sense for each state 𝑦 with
⋂

𝑛≥0 W𝑛
𝑦 = E𝑠 (𝑦) and

⋂
𝑛≥0 W𝑛

𝑝,𝑦 = E 𝑝
𝑠 (𝑦).

Moreover, if S𝑦 is replaced by convS𝑦, then the limits are E𝑟 (𝑦) and E 𝑝
𝑟 (𝑦) instead.

Example 3. The left panel of Figure 7 shows the convergence of the algorithm in Proposi-
tion 6.8 to E 𝑝

𝑠 in the regime-change game of Section 3. Even though S𝑦 (V∗
0 ) is strictly larger

than its pure-strategy counterpart S 𝑝
𝑦 (V∗

0 ), an iteration of these operators converges to the
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𝑤2

𝑤1

E 𝑝
𝑠 (𝑦2)

E 𝑝
𝑠 (𝑦1)

𝑤2

𝑤1

E 𝑝
𝑟 (𝑦2)

E 𝑝
𝑟 (𝑦1)

𝑤2

𝑤1

E𝑟 (𝑦2)
E𝑟 (𝑦1)

Figure 7: From left to right: convergence to E 𝑝
𝑠 = E𝑠, E 𝑝

𝑟 , and E𝑟 in the regime-change game.

same limit (not shown in Figure 7). For each state 𝑦𝑖, the sets E 𝑝
𝑠 (𝑦𝑖) = E𝑠 (𝑦𝑖) contain only

two payoff pairs corresponding to the players’ payoffs in the two Markov-perfect equilibria.
If, additionally, the players have access to a public randomization device, then the ability to

use behavior strategies enlarges the state-order dependent PPE correspondence. The middle
and right panels of Figure 7 shows the convergence to E 𝑝

𝑟 and E𝑟 , respectively.

6.4 Markov-perfect equilibria

Markov-perfect equilibria are a special case of state-order dependent PPE, in which the
strategies depend on the sequence of observed states only through the current state. The
following is a verification result for whether a given stationary strategy profile is an MPE.

Proposition 6.9. A stationary strategy profile 𝐴 = 𝛼∗(𝑆) satisfies SDE (5) with 𝑊 = 𝑤∗(𝑆),
𝛽 = 𝑀 = 0, and 𝛿(𝑦′) = 𝛿∗(𝑆, 𝑦′) given by

𝑤∗ := 𝑟𝐺∗(diag(𝑟1 + 1Λ∗) − Λ∗)−1, 𝛿∗(𝑦, 𝑦′) :=
𝑤∗(𝑦′) − 𝑤∗(𝑦)

𝑟
, (16)

where we denote by Λ∗ the matrix with entries 𝜆𝑦,𝑦′ (𝛼∗(𝑦)) in row 𝑦′ and column 𝑦, by 𝐺∗

and 𝑤∗ the matrices with entries 𝑔𝑖 (𝑦, 𝛼∗(𝑦)) and 𝑤𝑖
∗(𝑦), respectively, in row 𝑖 and column 𝑦,

and by 1 the row vector containing all ones. Moreover, 𝛼∗(𝑆) is an MPE if and only if

𝑤𝑖
∗(𝑦) ≥ 𝑔𝑖 (𝑦, 𝑎𝑖, 𝛼−𝑖

∗ (𝑦)) +
∑︁
𝑦′∈Y

𝛿𝑖∗(𝑦, 𝑦′)𝜆𝑦,𝑦′ (𝑎𝑖, 𝛼−𝑖
∗ (𝑦))

holds for each deviation to 𝑎𝑖 ∈ A𝑖 (𝑦), each state 𝑦, and each player 𝑖 = 1, 2.

Note that for a given map𝛼∗, matrices𝑤∗ and 𝛿∗ are determined explicitly by the respective
expressions in (16). A naive algorithm to find the set of pure-strategy MPE when each |A(𝑦) |
is small is thus to verify the conditions of all such pure-strategy maps 𝑎∗.
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7 Characterization of the PPE correspondence

Let us consider a restriction of the state-transition optimality equation (8) to action profiles
with support in some fixed set A⋄ ⊆ A(𝑦). For Lemma 5.4 to apply, it is imperative that we
restrict (𝛼, 𝛿) to a closed set. Instead of conditioning on action profiles with exact support A⋄,
we condition on its closure, the set of all 𝛼 with supp(𝛼) ⊆ A⋄. However, as the support of 𝛼𝑖

shrinks, enforceability imposes fewer constraints of the form (10), hence the set of incentives
changes discontinuously. That is why in the definition of ΥA⋄ (𝑤), we condition explicitly on
the set of binding enforceability constraints, and we consider the following restriction of (8):

𝑁⊤𝑤 = max
(𝛼,𝛿)∈ΥA⋄ (𝑤)

𝑁⊤(𝑔(𝑦, 𝛼) + 𝛿𝜆(𝑦, 𝛼)), (17)

where 𝑁 is an arbitrary direction in R2 for now. The maximization in (17) is taken over a non-
empty set for any payoff pair 𝑤 in K𝑦,A⋄ (W) :=

{
𝑤 ∈ V𝑦 (W)

�� ΥA⋄ (𝑤) ≠ ∅
}
. The following

lemma is the key ingredient to establish regularity of solutions to ODE (17).

Lemma 7.1. If A⋄ is a singleton or if Assumption 2 is satisfied, then 𝑤 ↦→ ΥA⋄ (𝑤) is

continuous on K𝑦,A⋄ (W) and locally Lipschitz continuous on the interior of K𝑦,A⋄ (W).

We can now rewrite the state-transition optimality equation as

𝑁𝑤
⊤𝑤 = max

A⋄⊆A(𝑦)
max

(𝛼,𝛿)∈ΥA⋄ (𝑤)
𝑁𝑤

⊤(𝑔(𝑦, 𝛼) + 𝛿𝜆(𝑦, 𝛼)). (18)

Note that we may maximize over the same action profile 𝛼 multiple times in (18), once for
each A⋄ ⊇ supp(𝛼). However, since (𝛼, 𝛿) ∈ ΥA⋄ (𝑤) ⊆ Υsupp(𝛼) (𝑤) for each such set A⋄,
equation (18) indeed coincides with (8). Because the outer maximum is taken over finitely
many sets A⋄, ODE (18) inherits all regularity properties from (17) except, possibly, on the
boundaries of any of the sets K𝑦,A⋄ (W). Solutions to (18) for behavior strategies and pure
strategies, respectively, are unique and smooth where they exist outside of the sets

K𝑦 (W) :=
⋃

A⋄⊆A(𝑦)
𝜕K𝑦,A⋄ (W), K𝑝

𝑦 (W) :=
⋃

𝑎∈A(𝑦)
𝜕K𝑦,𝑎 (W).

We call K𝑦 (W) the set of continuation-binding payoffs because feasibility must bind in a
continuation state. To see this, fix any 𝑤 ∈ 𝜕K𝑦,A⋄ (W) and (𝛼, 𝛿) ∈ΥA⋄ (𝑤). Then 𝑤+𝑟𝛿(𝑦′)
must lie on the boundary of at least one set W𝑦′ , otherwise 𝛿 would remain feasible for any 𝑣

sufficiently close to 𝑤, contradicting 𝑤 ∈ 𝜕K𝑦,A⋄ (W). In addition, at least one enforceability
constraint must bind. Otherwise, continuation promise 𝛿𝑣, defined by 𝑣+𝑟𝛿𝑣 (𝑦′) = 𝑤+𝑟𝛿(𝑦′),
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0 )K𝑦1, (𝐴,𝐼 ) (V∗
0 )

𝑟𝛿∗
𝑟𝛿∗𝑟𝛿∗

𝑤2

𝑤1
K𝑦1,A(V∗

0 )K𝑦1,A(V∗
0 )

𝑤2

𝑤1

K𝑝
𝑦1 (V∗

0 )

K𝑦1,A(V∗
0 )K𝑦1,A(V∗
0 )

Figure 8: Left: construction of K𝑦1, (𝐴,𝐼 ) (V∗
0 ). Middle: construction of K𝑦,A(V∗

0 ) as the convex hull
of the four translates V∗

0 − 𝑟𝛿∗(𝑎) in grey. Right: K𝑝
𝑦 (V∗

0 ) and K𝑦 (V∗
0 ) = K𝑝

𝑦 (V∗
0 ) ∪K𝑦,A(V∗

0 ).

enforces 𝛼 for 𝑣 sufficiently close to 𝑤, again contradicting 𝑤 ∈ 𝜕K𝑦A⋄ (W). For mixed
actions, this does not require that 𝑎̃𝑖 ∉ A𝑖

⋄ becomes a better response than actions inA𝑖
⋄, it may

simply be that it is no longer possible to feasibly support indifference among actions inA𝑖
⋄.

7.1 Continuation-binding payoffs

Consider first the case where the players’ actions affect the intensity of state transitions to
only a single state 𝑦′. Then incentives to player 𝑖 are provided along a single dimension
through 𝛿𝑖 (𝑦′), hence ΨA⋄ is a (possibly empty or unbounded) rectangle by Lemma 5.5. If it
is non-empty, denote its four (possibly infinite) corners by 𝛿1(𝑦′), . . . , 𝛿4(𝑦′). Then

K𝑦,A⋄ (W) = conv

( 4⋃
𝑘=1

W𝑦′ − 𝑟𝛿𝑘 (𝑦′)
)
. (19)

Example 4. Let us construct K𝑦1 (V∗
0 ) and K𝑝

𝑦1 (V∗
0 ) in the regime-change game, beginning

with action profile (𝐴, 𝐼). For the non-incumbent to play the costly action 𝐼, it is necessary
that a revolution is sufficiently rewarding. Similarly, the incumbent is willing to play the costly
action 𝐴 only if revolutions are sufficiently costly. Specifically, 𝛿 enforces (𝐴, 𝐼) if and only
if 𝛿1 ≤ −2

9 =: 𝛿1
∗ and 𝛿2 ≥ 5

4 =: 𝛿2
∗. Since the continuation value comes from V∗

0 , player 1’s
utility must be at least 2

9𝑟—otherwise no punishment in V∗
0 would be severe enough to deter

deviations. Similarly, player 2’s utility must be no more than 4 − 5
4𝑟 for continuations in V∗

0

to be sufficiently rewarding; see the left panel of Figure 8. Incentives 𝛿∗ bind for both players
simultaneously along the slanted segment of 𝜕K𝑦1,(𝐴,𝐼) (V∗

0 ). Repeating this procedure for all
pure action profiles yields K𝑝

𝑦1 (V∗
0 ), shown in the right panel of Figure 8.

Next, we construct K𝑦1,A(W). It follows from (13) that the four extremal incentives are
𝛿∗(𝐵, 𝑆) = (−2, 5

8 ), 𝛿∗(𝐵, 𝐼) = (−2
9 ,

5
8 ), 𝛿∗(𝐴, 𝑆) = (−2, 5

4 ), and 𝛿∗(𝐴, 𝐼) = (−2
9 ,

5
4 ). The

center panel of Figure 8 shows K𝑦1,A(V∗
0 ) constructed via (19). It follows from Lemma 7.2
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below that K𝑦1 (V∗
0 ) is is the union of K𝑝

𝑦1 (W) and 𝜕K𝑦1,A(V∗
0 ).

The following lemma establishes that under Assumption 2.(ii) with strictly monotone 𝜆,
the boundaries of Ψ𝑦,A⋄ overlap for the different supports Â so that K𝑦 (W) can either be
computed for all one-sided mixtures or for all pure and fully mixed action profiles.

Lemma 7.2. Suppose that Assumption 2.(ii) is satisfied with strictly monotone 𝜆. Then

K𝑦 (W) = K𝑝
𝑦 (W) ∪ 𝜕K𝑦,A(W) =

⋃
𝑖,𝑎𝑖 ,A−𝑖

⋄
𝜕K𝑦,𝑎𝑖 ,A−𝑖

⋄
(W).

Consider next the case where the players’ actions affect the intensities of state transitions
to multiple states and Assumption 2.(i) is satisfied, i.e., the successor states can be partitioned
into Y1 and Y2 such that player 𝑖 affects the intensity of transitions only to states 𝑦𝑖 ∈ Y𝑖.
Let 𝑤𝑖

𝑦𝑖
and 𝑤̄𝑖

𝑦𝑖
denote player 𝑖’s lowest and highest payoff in W𝑦𝑖 , respectively. Under

Assumption 2.(i), W-feasibility reduces to 𝑤𝑖
𝑦𝑖
≤ 𝑤 + 𝑟𝛿𝑖 (𝑦𝑖) ≤ 𝑤̄𝑖

𝑦𝑖
for all 𝑦𝑖 ∈ Y𝑖: because

transitions to 𝑦𝑖 provide no incentives to player −𝑖, for any such 𝛿𝑖 (𝑦𝑖) there exists 𝛿−𝑖 (𝑦𝑖)
with 𝑤 + 𝑟𝛿(𝑦𝑖) ∈ W𝑦𝑖 . It follows that K𝑦,A⋄ (W) is the rectangle of all 𝑤 that satisfy

min
𝛿∈Ψ𝑦,A⋄

max
𝑦𝑖∈Y𝑖

𝑤𝑖
𝑦𝑖
− 𝑟𝛿𝑖 (𝑦𝑖) ≤ 𝑤𝑖 ≤ max

𝛿∈Ψ𝑦,A⋄
min
𝑦𝑖∈Y𝑖

𝑤̄𝑖
𝑦𝑖
− 𝑟𝛿𝑖 (𝑦𝑖).

To characterize K𝑝
𝑦 (W) when Assumption 2 is not satisfied, we rewrite the enforceability

constraints in the following matrix form. Let Λ𝑖
𝑦 (𝑎) denote the matrix containing the column

vectors 𝜆(𝑦, 𝑎̃𝑖, 𝑎−𝑖) − 𝜆(𝑦, 𝑎) for 𝑎̃𝑖 ≠ 𝑎𝑖 and let 𝐺𝑖
𝑦 (𝑎) denote the row vector with entries

𝑔(𝑦, 𝑎̃𝑖, 𝑎−𝑖) − 𝑔(𝑦, 𝑎) for 𝑎̃𝑖 ≠ 𝑎𝑖. Then Ψ𝑦,𝑎 is the set of all 𝛿 that satisfy 𝛿𝑖Λ𝑖
𝑦 (𝑎) ≤ −𝐺𝑖

𝑦 (𝑎)
for 𝑖 = 1, 2. Let us reparametrize incentives via 𝛿 = ℎ(𝑤) + 𝑟𝛿, where ℎ(𝑤) ∈ R2×|Y | is the
matrix containing𝑤 in each column. Then 𝛿 ∈ Ψ𝑦,𝑎 (𝑤,W) if and only if 𝛿 ∈ >

𝑦′ W𝑦′ and

𝛿𝑖Λ𝑖
𝑦 (𝑎) − ℎ𝑖 (𝑤)Λ𝑖

𝑦 (𝑎) ≤ −𝑟𝐺𝑖
𝑦 (𝑎) (20)

for 𝑖 = 1, 2, where ℎ𝑖 (𝑤) = (𝑤𝑖, . . . , 𝑤𝑖) is row 𝑖 of ℎ(𝑤). Let Z𝑦,𝑎 denote the polyhedron of
all (𝑤, 𝛿) that satisfy (20). ThenK𝑦,𝑎 (W) is the projection ofZ𝑦,𝑎∩R2×>𝑦′ W𝑦′ onto the first
two dimensions. For any polygon approximation W′ of W , extremal points of K𝑦,𝑎 (W′) can
be computed as the projection of the finitely many extremal points ofZ𝑦,𝑎∩R2×>𝑦′ W′

𝑦′ .

7.2 Regularity of the state-transition optimality equation

To discuss regularity of the state-transition optimality equation, consider first its restric-
tion (17) to a fixed support A⋄. Let us rewrite (17) as 𝑁⊤𝑤 = max𝑣∈DA⋄ (𝑤) 𝑁

⊤𝑣, and con-
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DA⋄ (𝑤)

𝑁0

C0

C1𝑤

Figure 9: There are two solutions to (17) for every 𝑤0 ∉ S𝑦,A⋄ (W).

sider first a payoff pair 𝑤 that does not lie in the convex hull of DA⋄ (𝑤) as in Figure 9. Then
solutions to (17) evolve tangentially to DA⋄ (𝑤). Since DA⋄ (𝑤) is closed, it is strictly sepa-
rated from 𝑤, hence there are two tangents to convDA⋄ (𝑤) that go through any such 𝑤. Be-
cause DA⋄ (𝑤) is bounded and continuous in 𝑤 by Lemma 6.2, the direction of its two tan-
gents through 𝑤 change continuously. We call a solution C to (17) an oriented solution if
𝑁𝑤 always points towards the same side of C. Any oriented solution is continuously differen-
tiable, and (17) has two such solutions for any 𝑤0 ∉ convDA⋄ (𝑤0). Initial conditions for the
ODE (17) thus consist of a an initial point 𝑤0 and a binary choice over starting directions.

When players are restricted to pure strategies, DA⋄ is convex-valued by Lemma 6.2, hence
𝑤0 ∈ convDA⋄ (𝑤0) if and only if 𝑤0 is stationary. Thus, oriented solutions to (17) exist
and are continuously differentiable outside of S𝑦,A⋄ (W). This is convenient for a numerical
implementation of B𝑦 (W): we can compute S𝑦 (W) with the methods in Section 6, and need
not worry about existence of solutions to (17) outside of it. For behavior strategies, DA⋄ need
not be convex-valued, hence (17) may have no solutions at some non-stationary payoffs. We
establish in Lemma 7.4 below that all such payoffs lie in the interior of B𝑦 (W). Consider
now (8) without restriction on the support, and write it as 𝑁⊤𝑤 = max𝑥∈D𝑦 (𝑤) 𝑁

⊤𝑥, where

D𝑦 (𝑤) := conv
(⋃

A⋄
D𝑦,A⋄ (𝑤)

)
.

Let us denote by K̄𝑦 (W) :=
⋃

A⋄⊆A(𝑦) K𝑦,A⋄ (W) the effective domain of D𝑦, i.e., the set of
all 𝑤 where D𝑦 (𝑤) ≠ ∅. Since each D𝑦,A⋄ is continuous by Lemma 6.2, D𝑦 is continuous on
K̄𝑦 (W) \K𝑦 (W) as the convex hull of a finite union of such maps. Let us denote by S̄𝑦 (W)
the set of all 𝑤 with 𝑤 ∈ D𝑦 (𝑤). Outside of S̄𝑦 (W), a solution to (8) again evolves in the
direction of one of the two tangents to D𝑦 (𝑤). There are two oriented solutions at each 𝑤,
hence initial conditions of (8) consist of a payoff pair 𝑤 and the selection of an orientation.

Proposition 7.3. For any 𝑤 ∈ K̄𝑦 (W) \ S̄𝑦 (W), there are two oriented solutions to (8). If

players are restricted to pure strategies or Assumption 2 holds, then oriented solutions are

unique, continuously differentiable, and continuous in initial conditions outside of K𝑦 (W).
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Finally, the following lemma establishes that existence of solutions outside of S̄𝑦 (W) is
sufficient to characterize the boundary of B𝑦 (W).

Lemma 7.4. S𝑦 (W) ⊆ S̄𝑦 (W) ⊆ B𝑦 (W) and any 𝑤 ∈ 𝜕B𝑦 (W) ∩ S̄𝑦 (W) solves (8).

7.3 Main result

To aggregate the results discussed so far, note that the state process is sufficient to provide
incentives for (𝑤, 𝑁) in Γ𝑦 (W) :=

{
(𝑤, 𝑁) ∈ R2 × 𝑆1

�� ∃𝛼 and (0, 𝛿) ∈ Ξ𝑦,𝛼 (𝑤, 𝑁,W)
}
.

We denote by Γ
𝑝
𝑦 (W) the subset where such 𝛼 exists in pure actions.

Theorem 7.5. Suppose that Assumptions 1 and 2 hold. For any family W of compact and

convex payoff sets and any state 𝑦, the set B𝑦 (W) is the largest closed convex subset of

V𝑦 (W) that contains S𝑦 (W) such that its boundary is continuously differentiable outside of

S𝑦 (W) ∪K𝑦 (W) and (𝑤, 𝑁𝑤) solves (8) within Γ𝑦 (W) and (9) outside of Γ𝑦 (W).
Moreover, B𝑝

𝑦 (W) satisfies the same characterization under Assumption 1 for the pure-

strategy restrictions of the optimality equations and the sets V , S, K, and Γ.

Because we have discussed the optimality equations, S, and K in the preceding subsec-
tions, it remains to provide an intuition for Γ𝑦 (W). Incentives through the public signal are
used for two reasons. First, it may simply not be possible to provide sufficient incentives with-
out it. Second, even if it is possible, the marginal cost of tangential transfers at 𝛽 = 0 may be
lower than the marginal cost of incentives through the destruction of value after state transi-
tions.8 A sufficient statistic for the public signal to be used is that 𝑔(𝑦, 𝛼) + 𝛿𝜆(𝑦, 𝛼) lies be-
low the tangent for any action profile 𝛼 enforced by W-feasible 𝛿. Thus, as a general rule, the
public signal is more likely to be used if stage-game payoffs in state 𝑦 are high in direction 𝑁

relative to its successor states. We illustrate this below for the regime-change game.

Example 5. The left panel in Figure 10 shows that the boundary ofB𝑦1 (V∗
0 ) is given by smooth

solutions to the optimality equations outside the set of stationary payoffs. Along the efficient
frontier, incentives are provided through state transitions exclusively because transitions to
state 𝑦2 weakly increase the weighted sum of payoffs 𝑁⊤𝑤. Extremal stationary payoffs are
constrained efficient, but other extremal payoffs are not: the continuation value 𝑤̂ + 𝑟𝛿 lies

8Formally, let 𝛽(𝛼, 𝛿, 𝑁) be the lowest-variance transfers orthogonal to 𝑁 that enforce 𝛼, given 𝛿. Let 𝛼∗ and
𝛿∗ maximize 𝑓 (𝛼, 𝛿) := 𝑁⊤(𝑔(𝑦, 𝛼) + 𝛿𝜆(𝑦, 𝛼)) among all W-feasible 𝛿 that enforce 𝛼. Tangential transfers are
too costly if all feasible directional derivatives of 𝑟2

2 𝜅𝑦 (𝑤)∥𝑇⊤𝛽(𝛼, 𝛿, 𝑁)𝜎(𝑦)∥2 at (𝛼∗, 𝛿∗) exceed those of 𝑓 .
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Figure 10: The left panel shows B𝑦1 (V∗
0 ) in the regime-change game. The right panel shows B̃𝑦1 (V∗

0 )
of all payoffs that can be attained with incentives from the state process only.

below the V∗
0 -feasible level in direction 𝑁𝑤̂ because rewards exceeding 5/4 would encourage

player 2 to instigate a revolution. The remaining parts of the boundary are solutions to (9),
where incentives are provided through both channels. An iterative application of B yields E
in Figure 3. In this example, B coincides with B𝑝 and, hence, E 𝑝 (𝑟) = E (𝑟).

Example 6. For the sake of comparison, the right panel in Figure 10 shows the set B̃𝑦1 (V∗
0 )

of all payoffs generated by V∗
0 with incentives provided exclusively through the state process.

Equivalently, this is the setB𝑦1 (V∗
0 ) in a version of the regime-change game with a completely

uninformative public signal. The solution to the state-transition optimality equation (8) has a
kink at 𝑤0 ∈ 𝜕K𝑦1,(𝐴,𝐼) (V∗

0 ) because (𝐴, 𝐼) is not enforceable by V∗
0 -feasible incentives alone

at any payoff 𝑤 with 𝑤1 < 𝑤1
0. The kink disappears when the residual incentives can be

provided through an informative public signal as seen in the left panel of Figure 10.

In Example 6,K𝑦1 (V∗
0 ) affects only the smoothness of solutions to (8). Online Appendix E

provides an example where E (𝑦) contains a segment of positive length in K𝑦 (E).

We conclude this section with the following sufficient condition for the pure- and behavior-
strategy PPE payoff correspondences to coincide. This is the case in games where 𝑔, 𝜆, and
𝜇 all have a product structure, hence players exclusively compete over which continuation
states are reached. A patent race is an example of such a game; see Section 8.1 below.

Lemma 7.6. If Assumptions 1 and 2.(i) hold in state 𝑦 and 𝑔𝑖 (𝑦, 𝑎) depends only on player 𝑖’s

actions, then B𝑦 (W) = B𝑝
𝑦 (W). If these assumptions hold in all states, then E (𝑟) = E 𝑝 (𝑟).

32



8 Discussion

8.1 Example of a two-stage patent race

An example of a stochastic game that is neither absorbing nor irreducible is a multi-stage patent
race. On the path to developing a patentable technology, two competing labs 𝑖 = 1, 2 have to
achieve several intermediate milestones that are publicly osberved. For instance, a vaccine
must pass multiple trial phases, and a self-driving car requires the development of various
auxiliary technologies. For specificity, consider a winner-take-all two-stage patent race. The
value of the patent is 1, accruing to the first lab to complete both stages of research. There are
two absorbing states 𝑦𝑖 in which lab 𝑖 holds the patent, and four intermediate states 𝑦𝑠1,𝑠2 for
𝑠𝑖 ∈ {0, 1} indicating that lab 𝑖 has completed 𝑠𝑖 stages of research. The initial state is 𝑦0,0, and
the feasible state transitions are indicated in Figure 11. We parametrize the game through the
research intensity 𝐴𝑖

𝑡 ∈ {0, . . . , 5} chosen by each lab 𝑖, i.e., state transitions are given by

𝜆𝑦0,0,𝑦1,0 (𝐴𝑡) = 𝜆𝑦1,𝑠2 ,𝑦1 (𝐴𝑡) = 𝐴1
𝑡 , 𝜆𝑦0,0,𝑦0,1 (𝐴𝑡) = 𝜆𝑦𝑠1 ,1,𝑦2 (𝐴𝑡) = 𝐴2

𝑡 .

Each lab 𝑖 incurs a flow cost of (𝐴𝑖
𝑡)2 d𝑡, that is, 𝑔𝑖 (𝑦, 𝑎) = −(𝑎𝑖)2 in any non-absorbing

state 𝑦. The flow cost is convex because good research ideas and personnel are scarce, hence
additional research effort is more costly at the margin. The stock price 𝑋 𝑖 of each lab 𝑖 reflects
market beliefs about the chances of 𝑖’s success, and it is publicly observed. We suppose that
d𝑋 𝑖

𝑡 = 𝛾𝐴𝑖
𝑡 d𝑡 + d𝑍 𝑖

𝑡 for a constant 𝛾 ≥ 0 and two independent Brownian motions 𝑍1 and 𝑍2.
The parameter 𝛾 captures the informativeness of the stock prices: if 𝛾 > 0, market beliefs
about the chance of success carry some information about research efforts, whereas if 𝛾 = 0,
movements in the stock price are driven purely by speculation. Both labs discount the future at
rate 𝑟 = 1/8. Each lab can ensure a payoff of 0 by never carrying out any research, hence V∗

0 is
the triangle with extremal points (1, 0), (0, 1), and (0, 0); see the right panel of Figure 11.

Because state transitions and flow payoffs have a product structure, Lemma 7.6 implies that
all PPE are attained by pure strategies. We begin by computing the Markov-perfect equilibria
via Proposition 6.9. Independent of 𝛾, there are two MPE 𝑎∗,𝑘 for 𝑘 = 1, 2, given by

𝑎∗,𝑘 (𝑦0,0) = (𝑘, 𝑘), 𝑎∗,𝑘 (𝑦1,0) = (2, 1), 𝑎∗,𝑘 (𝑦0,1) = (1, 2), 𝑎∗,𝑘 (𝑦1,1) = (3, 3).

To compute the full PPE correspondence efficiently, we proceed backwards through the graph
in the left panel of Figure 11. First, the payoff sets E (𝑦1) = {(1, 0)} and E (𝑦2) = {(0, 1)} in
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E (𝑦0,0)E (𝑦0,0)

V∗
0

Figure 11: Left panel: feasible state transitions in the two-stage patent race. Right panel: PPE payoff
correspondence for 𝛾 = 0 (small), 𝛾 = 2 (intermediate), and 𝛾 = 5 (large).

the terminal states are simply given by the value of the patent. Second, because only states 𝑦1

and 𝑦2 can be reached from 𝑦1,1, a single application ofB yields E (𝑦1,1) = B𝑦1,1 (E (𝑦1), E (𝑦2)).
Similarly, the PPE payoffs with initial states 𝑦1,0, 𝑦0,1, and finally 𝑦0,0 follow from a single
application of B after the PPE payoffs in their continuation states have been computed. In
this example, the differential characterizations decouple entirely across states. We discuss
how the computation across states decouples more generally in Section 8.2. The right panel
of Figure 11 shows the PPE payoff correspondence for the three values 𝛾 = 0, 𝛾 = 2, and
𝛾 = 5. The family of PPE payoffs is increasing in 𝛾. We show in Section 8.3 that such a
monotonicity result holds more generally. For 𝛾 = 0, the only PPE are public randomizations
of the two Markov-perfect equilibria. We can read off equilibrium behavior from the PPE
payoff correspondence through the action profiles and continuation promises that attain the
maximum in the optimality equations. Those are illustrated in Figures 12 and 13 for 𝛾 = 5.

Let us first analyze equilibrium behavior in state 𝑦1,1, equivalent to a one-stage patent
race. The entire boundary of E (𝑦1,1) solves the optimality equation (9), hence incentives are
provided through the public signal at all times. Because research success is linear in effort
but the cost is convex, low research intensities are chosen along the efficient frontier. PPE on
the efficient frontier can be interpreted as a tacit non-compete agreement, where compliance
is monitored via stock prices. Outside of payoffs 𝑤̂1 and 𝑤̂2 only a single lab engages in
research; the region between 𝑤̂1 and 𝑤̂2 corresponds to a transitional phase where the labs
switch roles. An increase of 𝑋1 − 𝑋2 leads to a counterclockwise change in the continuation
value. Above 𝑤̂2, where only lab 2 is supposed to engage in research, this may indicate that

34



0

𝑤2

0 𝑤1

1

1

0

𝑤2

0 𝑤1

1

1

(1, 1)

(0, 1)

(1, 0)

(0, 2)

(2, 0)

(0, 5)

(5, 0)

(1, 5)
(2, 5)

(5, 2)

(4, 5)

(5, 4)

(3, 5)

(5, 3)(5, 5)

drift

drift

(3, 3)

𝑤ℓ𝑤ℓ

𝑤ℎ

𝑤̂2

𝑤̂1

𝜕K𝑦1,0, (1,1) (E (𝑦1,1))

0 𝑤1

(2, 1)(2, 1)

(2, 2)(2, 2)(0, 3)(0, 2)
(0, 3)
(0, 4)
(1, 5)
(3, 5)
(2, 5)
(4, 4) (5, 1)(5, 1) (5, 0)(5, 0) (4, 0)(4, 0) (3, 0)(3, 0)(2, 0)(2, 0)

(1, 0)

(1, 1)

(0, 1)

𝑣ℓ𝑣ℓ

𝑣𝑠𝑣𝑠

𝑣̂1𝑣̂1

𝑣̂2𝑣̂2

E (𝑦1)E (𝑦1)

E (𝑦2)E (𝑦2)

E (𝑦1)E (𝑦1)

E (𝑦2)E (𝑦2)

(1, 1)(1, 1)
(2, 2)(2, 2)

(1, 1)(1, 1)
(1, 2)(1, 2)

(2, 1)(2, 1)(1, 2)(1, 2)

(2, 1)(2, 1)

(1, 2)(1, 2)

(2, 1)(2, 1)
(2, 2)(2, 2)

E (𝑦1,1)E (𝑦1,1)

E (𝑦1,0)E (𝑦1,0)

E (𝑦0,1)E (𝑦0,1)

E (𝑦0,0)E (𝑦0,0)

Figure 12: PPE payoff correspondence for 𝛾 = 5. The hatched ares correspond to stationary payoffs.
The generically unique actions profiles played on the boundary are indicated outside of the payoff sets.
Arrows in the interior indicate the direction of the drift. Finally, MPE payoffs and action profiles are
indicated in color in the interior of the payoff sets.

lab 1 has violated the agreement. If 𝑋1−𝑋2 increases sufficiently, lab 2 increases its research
efforts to make such violations by lab 1 unattractive. Below 𝑤̂1, the same phenomenon
suggests that lab 2 has complied, hence lab 2 is rewarded with the permission to carry out
research when the continuation value crosses 𝑤̂1. The continuation value drifts away from
payoff pairs 𝑤ℓ and 𝑤ℎ towards 𝑤̂1 and 𝑤̂2. The drift between 𝑤ℎ and 𝑤̂𝑖 is moderate so that
a switch of roles is not uncommon along an equilibrium path. The drift between 𝑤ℓ and 𝑤̂𝑖,
however, is rather strong, hence a lab rarely increases their research intensity beyond 2: it
will have to see very strong evidence that their competitor has violated the agreement before
carrying out such a costly punishment.

The PPE that attains the lowest symmetric payoff pair 𝑤ℓ begins with maximal research
effort (5, 5). If 𝑋1 initially outperforms 𝑋2, the continuation value again moves counterclock-
wise and lab 1 emerges as the market favorite. The drift from 𝑤ℓ to 𝑤̂1 is strong, hence lab 2

35



0

𝑤2

0 𝑤1

1

1

E (𝑦1)

E (𝑦2)

0

𝑤2

0 𝑤1

1

1

E (𝑦1)

E (𝑦2)

E (𝑦1,1)E (𝑦1,1)

E (𝑦1,0)E (𝑦1,0)

E (𝑦0,1)E (𝑦0,1)

E (𝑦0,0)E (𝑦0,0)

Figure 13: State transitions if the follower catches up.

reduces its research intensity rather quickly until lab 1 is the sole active researcher. Lab 1 then
also gradually lowers its research effort and the labs enter the tacit non-compete regime de-
scribed above. The period of high research activity is short because the prize at the end is fixed.
High symmetric research effort beyond the Markov-perfect level (3, 3) is not sustainable.

In state 𝑦1,0, the action profiles along the boundary yield the equilibrium behavior until the
next breakthrough and the continuation promise 𝛿(𝑦1,1) indicates what continuation PPE is
played if lab 2 happens to catch up; see Figure 13. If lab 2 exerts a positive amount of effort at
a boundary payoff 𝑤, transitions to state 𝑦1,1 happen on the path and, generally, a continuation
PPE is played that maximizes E (𝑦1,1) for payoff weights close to 𝑁𝑤. Along the lower
boundary of E (𝑦1,0), lab 2 is not supposed to conduct research, hence transitions to state 𝑦1,1

lie off the path. Violations by lab 2 are deterred most effectively by a continuation PPE 𝐴∗ that
yields the lowest utility for lab 2. Because 𝐴∗ is also a poor continuation PPE for the leading
lab 1, Figure 13 illustrates that the leading lab’s continuation value is always low if the follower
catches up—there is momentum to research and it shifts away from the former leader.

The efficient frontier between 𝑣𝑠 and 𝑣̂2 again corresponds to a tacit non-compete agree-
ment, though the asymmetry between the labs affect its structure. The leading lab 1 is willing
to enter a non-compete agreement only if the agreement is highly advantageous. The drift rate
indicates that the continuation value fluctuates around the region between 𝑣̂1 and 𝑣̂2, where
lab 1 invests a small amount of resources and lab 2 drops in and out of research. Because off-
path continuations are detrimental to lab 1, it increases its research intensity for much lower
evidence that lab 2 has cheated than in state 𝑦1,1. Research intensities of 3 or 4 are not uncom-
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mon on the path. As in state 𝑦1,1, the lowest-utility payoff pair 𝑣ℓ is attained by a high initial
research effort and a quick reduction of research effort, first by the perceived underdog, then
by the market favorite. If lab 1 becomes the market favorite, the labs reach the non-compete
region, whereas if lab 2 initially becomes the market favorite, the labs eventually play the sta-
tionary profile (2, 2) when 𝑣𝑠 is reached. Because the labs are further away from the patent,
research intensities both at 𝑣ℓ and at stationary payoffs are lower than in state 𝑦1,1.

Finally, the boundary of E (𝑦0,0) consists stationary payoffs and solutions to (8) exclusively.
Notably, stock price information is completely ignored. Because the patent is even more
distant, research efforts in the MPE are weakly lower than in state 𝑦1,0.

Even though the PPE payoff correspondence is monotone in 𝛾, which type of information is
used along the boundary is not. A more informative public signal is not necessarily used more
in all states. For 𝛾 = 2, the boundary of E (𝑦0,0) is entirely a solution to (9), hence the public
signal is used everywhere along the boundary. By contrast, it is completely ignored if 𝛾 = 0 or
𝛾 = 5. Driving this non-monotonicity is the fact thatE (𝑦1,1) is smaller for 𝛾 = 2 than for 𝛾 = 5,
hence fewer incentives can be provided through state transitions alone in earlier states.

Grossman and Shapiro (1987) characterize the MPE of this model and extensions to
arbitrary increasing and convex cost functions. Their main conclusions are “that the leader
always devotes more resources to R&D than does the follower, but that if the latter happens to
catch up, both firms intensify their effort.” Our model allows us to expand on their results:

(i) If an informative pubic signal is available, labs engage in a tacit non-compete agreement
on the efficient frontier of the equilibrium correspondence to keep research costs low.

(ii) The leader devotes more resources than the follower in the non-compete agreement
because the leader is in a better position to negotiate.

(iii) Since research intensities remain low on the efficient frontier, our analysis suggests that
research intensities in the MPE increase when the follower catches up not because the
labs’ dynamics shift, but because the discounted expected prize of the patent increases.

8.2 Minimizing state interdependencies

In the patent race, we computed E (𝑦) sequentially, each with a single application of B𝑦. This
is not possible in the regime-change game because the states communicate, i.e., both states
can be reached from each other. If there are communicating states, we approximate E through
Proposition 4.9, but we do not have to approximate all states simultaneously.
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A set of states Y0 ⊆ Y is a communicating class if each state within Y0 can be reached
from any other state in Y0 with positive probability. Communicating classes of a Markov
process form a directed acyclic graph; similarly to the left panel in Figure 11. The PPE payoff
correspondence can be computed sequentially across communicating classes by starting with
a terminal communicating class and proceeding backwards through the graph. Because the
graph is acyclic, at any point in this procedure, PPE payoffs of all reachable states outside
the current communicating class have already been computed. PPE payoffs within each
communicating class Y0 are given by a single application of B if and only if Y0 is a singleton
as in the patent race. Otherwise, we apply Proposition 4.9 to Y0.

8.3 Monotonicity in game primitives

In this section, we perform comparative statics on the game primitives 𝑟, 𝜆, 𝜇, and 𝜎. We
begin with a monotonicity result in the informativeness of the public signal.

Lemma 8.1. Let 𝜇̃ and 𝜎̃ be such that for each state 𝑦, there exists a diagonal matrix 𝐷𝑦

with diagonal elements in [−1, 1] \ {0} such that 𝜎̃−1(𝑦)𝐷𝑦𝑀̃
𝑖
𝑦 (𝑎) = 𝜎−1(𝑦)𝑀 𝑖

𝑦 (𝑎) for

each 𝑎 ∈A(𝑦).9 Then E ( 𝜇̃, 𝜎̃; 𝑦) ⊇ E (𝜇, 𝜎; 𝑦) and E 𝑝 ( 𝜇̃, 𝜎̃; 𝑦) ⊇ E 𝑝 (𝜇, 𝜎; 𝑦) for each state 𝑦.

The existence of such a diagonal matrix 𝐷𝑦 means that the signal-to-noise ratio of each
dimension of the public signal is at least as high under ( 𝜇̃, 𝜎̃) as it is under (𝜇, 𝜎). Some
dimensions may be scaled more than others, but scaling is independent of the actions taken.
The key idea is that the signal with the higher signal-to-noise ratio

��𝜎̃−1(𝑦) 𝜇̃(𝑦, · )
�� can

be garbled with public randomization until it is as informative as under parameters (𝜇, 𝜎).
A PPE 𝐴 under (𝜇, 𝜎) gives rise to a PPE under ( 𝜇̃, 𝜎̃) that is the same function from histories
to actions, except that the public signal is replaced with the garbled signal.

The same garbling logic cannot be applied to derive a monotonicity result in 𝜆: while
garbling would make state transitions less informative, players cannot ignore state transitions
between non-equivalent states.10 For the same reason, the PPE payoff correspondence need
not vary monotonically in the discount rate since that affects the relative weight of current
and future states. We provide a counterexample to both in Online Appendix E.

While the PPE payoff correspondence does not change monotonically in 𝜆 and 𝑟 individ-
9Recall here that 𝜎−1 (𝑦) is used to denote the right-inverse 𝜎(𝑦)⊤(𝜎(𝑦)𝜎(𝑦)⊤)−1.

10Two states 𝑦 and 𝑦′ are equivalent if A, 𝑔, 𝜇, and 𝜎 coincide in the two states and 𝜆𝑦,𝑦′ (𝑎) = 𝜆𝑦′ ,𝑦 (𝑎) as
well as 𝜆𝑦,𝑦̃ = 𝜆𝑦′ , 𝑦̃ for 𝑦̃ ∉ {𝑦, 𝑦′}. A transition from state 𝑦 to 𝑦′ or vice versa is then just a public signal.
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ually, the following time-change result establishes that a decrease of both by the same fac-
tor 𝜂 ∈ (0, 1) has the same effect as an increase of the signal-to-noise ratio of the public sig-
nal because players get to observe more signal realizations in the same discounted time.

Lemma 8.2. Let 𝜇̃, 𝜎̃ and 𝜂 > 0 be such that 𝜎̃−1(𝑦) 𝜇̃(𝑦) =√
𝜂𝜎−1(𝑦)𝜇(𝑦) for each 𝑦. Then

a strategy profile 𝐴 is a PPE for the game primitives (𝑟, 𝜇, 𝜎, 𝜆) if and only if (𝐴𝜂𝑡)𝑡≥0 is a

PPE with respect to the game primitives (𝜂𝑟, 𝜇̃, 𝜎̃, 𝜂𝜆). Moreover, for every 𝑡 ≥ 0,

𝑊̃𝑡 ((𝐴𝜂𝑠)𝑠≥0; 𝜂𝑟, 𝜇̃, 𝜎̃, 𝜂𝜆) = 𝑊𝜂𝑡 (𝐴; 𝑟, 𝜇, 𝜎, 𝜆) a.s.,

where 𝑊̃ is the continuation value (2) with respect to the time-changed filtration (F𝜂𝑡)𝑡≥0.

Lemma 8.2 shows that the family of PPE payoffs depends on the game primitives 𝑟, 𝜇,
𝜆, and 𝜎 only through the quantities 𝜆/𝑟 and 𝜎−1(𝑦)𝜇(𝑦)/

√
𝑟. Similar square-root laws for

repeated games with Brownian information, but not for Poisson information or stochastic
games, have been established in Faingold and Sannikov (2011) and Bernard and Frei (2016).
Together with Lemma 8.1, we obtain the following joint monotonicity result in 𝜆 and 𝑟.

Corollary 8.3. E (𝜂𝜆, 𝜂𝑟; 𝑦) ⊇ E (𝜆, 𝑟; 𝑦) and E 𝑝 (𝜂𝜆, 𝜂𝑟; 𝑦) ⊇ E 𝑝 (𝜆, 𝑟; 𝑦) for any 𝜂 ∈ (0, 1).

9 Conclusion

This paper characterizes perfect public equilibria, state-order dependent equilibria, and
Markov-perfect equilibria in continuous-time stochastic games with imperfect public moni-
toring. Crucially, the analysis holds for any discount rate 𝑟 > 0, which preserves the corre-
spondence from initial states to equilibrium payoffs. The central restriction—and only re-
striction when players use pure strategies—on the state process is that the state space is finite.
In particular, the methodology is not limited to irreducible games or absorbing games.

There are four avenues for future research that appear promising. First, the two-player
restriction and the product structure are satisfied in dynamic principal-agent models. This
framework could be used to extend the dynamic contracting literature initiated by Sannikov
(2008) to models, in which the agent’s wage level additionally depends on a discrete state
variable, which may or may not be affected by the agent’s actions. Second, identifiability
assumptions are key to folk theorems and limit results as players get arbitrarily patient. The
techniques in the paper may thus help establish a folk-theorem for non-irreducible stochastic
games where, unlike in Pęski and Wiseman (2015), the public signal remains imperfectly
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informative in the limit. Third, it would be interesting to extend the framework to deterministic
state transitions so that the model can accommodate quarterly reports by companies or regular
political elections. Fourth, and more on the applied side, the fact that the correspondence
of initial states to PPE payoffs is preserved allows us to draw conclusions about the values
the players or a designer should assign to different initial states. For example, if a policy is
implemented that requires players to take on two asymmetric roles in alternating fashion, the
imbalance created by the initial role assignment can be properly compensated.
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Outline of the appendices

Appendix A contains the mathematical foundation of the model and the proofs of those results
that rely on it with the exception of Lemmas 4.1, 4.3, and 4.7, as well as Proposition 4.9—
their proofs are similar to proofs in Sannikov (2007) and Bernard (2024) and are deferred to
Appendix H in the supplemental information found online.11 Appendix B contains the proofs
related to feasibility and state-order dependence. Appendix C contains the proofs of Lem-
mas 4.5, 5.5, and 7.6 that relate game primitives and enforceability. Online Appendix F estab-
lishes regularity of the optimality equations. The results that characterize S𝑦 (W) andK𝑦 (W)
or simplify their computation are proven in Online Appendix G. Finally, the perturbation
argument in Section 5.1 is proven in Appendix I in the supplemental information online.11

A Mathematical foundation

Let Z denote the set of ordered pairs (𝑦, 𝑦′), for which there exists a pure action profile
𝑎 ∈ A(𝑦) with 𝜆𝑦,𝑦′ (𝑎) > 0. Let (Ω,F , 𝑃) be a probability space containing a 𝑑-dimensional
Brownian motion 𝑍 and a Poisson process 𝐽𝑦,𝑦

′ with intensity 1 for each (𝑦, 𝑦′) ∈ Z such
that (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z and 𝑍 are mutually independent. The state process 𝑆 is defined by

𝑆0 = 𝑦0, 𝑆𝑡 :=

{
𝑆𝑡− if Δ𝐽𝑆𝑡− ,𝑦𝑡 = 0 for all 𝑦 with (𝑆𝑡−, 𝑦) ∈ Z ,

𝑦 if Δ𝐽𝑆𝑡− ,𝑦𝑡 = 1,
(21)

i.e., 𝑆 is piecewise constant and jumps to 𝑦 at time 𝑡 if and only if Δ𝐽𝑆𝑡− ,𝑦𝑡 = 1. The family of
probability measures 𝑄𝐴 = (𝑄𝐴

𝑡 )𝑡≥0 is defined via its density process

d𝑄𝐴
𝑡

d𝑃
= E𝑡

(∫ ·

0
𝜇(𝑆𝑠, 𝐴𝑠)⊤(𝜎−1(𝑆𝑠))

⊤d𝑍𝑠 +
∑︁

(𝑆𝑠− ,𝑦)∈Z

∫ ·

0
(𝜆𝑆𝑠− ,𝑦 (𝐴𝑠−)−1)

(
d𝐽𝑆𝑠− ,𝑦𝑠 −d𝑠

))
, (22)

where E𝑡 (𝑋) = exp(𝑋𝑡−𝑋0− 1
2 ⟨𝑋

𝑐⟩𝑡
) ∏

0<𝑠≤𝑡 (1+Δ𝑋𝑠)e−Δ𝑋𝑠 is the Doléans-Dade exponential
of process 𝑋 . By Girsanov’s theorem, the public signal indeed takes the form (1) under 𝑄𝐴

and state transitions occur with instantaneous intensities 𝜆𝑆𝑡− ,𝑦 (𝐴𝑡−).

F contains the history of all processes (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z , not just of 𝑆, so that the density
process is adapted toF. Under𝑄𝐴, the instantaneous intensities of the processes 𝐽𝑦,𝑦′ are equal
to 1 on {𝑆 ≠ 𝑦} so that players learn nothing from these processes. A mathematical foundation

11See here: https://benjamin-bernard.com/research/stochastic-games_SI.pdf.
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based on processes (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z ensures that each 𝑄𝐴
𝑡 is absolutely continuous with respect

to some reference measure 𝑃. Then, demanding that a statement holds 𝑃⊗ 𝐿𝑒𝑏𝑒𝑠𝑔𝑢𝑒-almost
everywhere ensures that it holds almost everywhere both on and off the path.

A.1 Monotonicity

Proof of Lemma 8.1. For any 𝑦0 and 𝑤0 ∈ E (𝜇, 𝜎; 𝑦0), let 𝐴 be a PPE attaining 𝑤0 for
parameters (𝜇, 𝜎) on a stochastic framework

(
Ω,F ,F, 𝑃, 𝑍, (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z

)
with induced state

process 𝑆. Abbreviate 𝑊 = 𝑊 (𝑦0, 𝐴) and let 𝛽, 𝛿, and 𝑀 be the processes that satisfy (5).
By assumption on 𝜇̃ and 𝜎̃, there exist constants 𝑐𝑦 such that 𝜎̃−1(𝑦)𝐷𝑦 ( 𝜇̃(𝑦, 𝑎) + 𝑐𝑦) =

𝜎−1(𝑦)𝜇(𝑦, 𝑎) for each action profile 𝑎 ∈ A(𝑦). By an equivalent change of the reference
measure 𝑃, we may assume without loss of generality that 𝑐𝑦 = 0. Moreover, by Lemma 8.2
it is sufficient to show that 𝑤0 can be attained by a PPE for parameters 𝜇 and 𝐷𝑦𝜎(𝑦). Here,
it is relevant that 𝐷𝑦 has non-zero eigenvalues so that 𝐷𝑦𝜎(𝑦) has a right-inverse 𝜎−1(𝑦)𝐷−1

𝑦

and the density process in (22) with respect to (𝜇, 𝐷𝑦𝜎) is well-defined. The goal is to split
the Brownian motion into two orthogonal components 𝑍 = 𝑅𝑦 𝑍̂ + 𝑅⊥

𝑦 𝑍̂
⊥, where 𝑅𝑦 captures

the relevant information in 𝐷𝑦 and the second term corresponds to public randomization.

Abbreviate 𝜎𝑦 := 𝜎(𝑦) and define 𝑅𝑦 := 𝜎𝑦
⊤(𝜎𝑦𝜎𝑦

⊤)−1𝐷𝑦𝜎𝑦 so that 𝜎𝑦𝑅𝑦 = 𝐷𝑦𝜎𝑦. Let 𝑣
be an eigenvector of 𝑅𝑦 with eigenvalue 𝜂. If 𝑣 ∈ ker(𝜎𝑦), then 𝜂 = 0. If 𝑣 ∉ ker(𝜎𝑦), then
𝐷𝑦𝜎𝑦𝑣 = 𝜎𝑦𝑅𝑦𝑣 = 𝜂𝜎𝑦𝑣, hence 𝜂 is the eigenvalue of eigenvector 𝜎𝑦𝑣 of 𝐷𝑦. This implies
that 𝑅𝑦 has eigenvalues in [−1, 1] and ker(𝜎𝑦𝑅𝑦) = ker(𝜎𝑦). Symmetry of 𝜎𝑦𝜎𝑦

⊤ implies

𝑅𝑦
⊤= 𝜎𝑦

⊤𝐷𝑦 (𝜎𝑦𝜎𝑦
⊤)−1𝜎𝑦 = 𝜎𝑦

⊤(𝜎𝑦𝜎𝑦
⊤)−1𝐷𝑦𝜎𝑦 = 𝑅𝑦,

i.e., 𝑅𝑦 is symmetric. Thus, 𝑅𝑦 allows a decomposition into 𝑅𝑦 = 𝑄𝑦
⊤𝐸𝑦𝑄𝑦, where 𝑄𝑦 is

orthogonal and 𝐸𝑦 is a diagonal matrix with the eigenvalues of 𝑅𝑦 on the diagonal. Set 𝐸⊥
𝑦 :=√︁

I − 𝐸2
𝑦 , where I is the identity matrix, and define 𝑅⊥

𝑦 := 𝑄𝑦
⊤𝐸⊥

𝑦 𝑄𝑦. Since 𝑅2
𝑦 + (𝑅⊥

𝑦 )2 = I, it
follows from Lévy’s characterization theorem that 𝑍̂ := 𝑅𝑦𝑍 + 𝑅⊥

𝑦 𝑍
⊥ is a standard Brownian

motion with respect to F̂. Define the diagonal matrix 𝐸̂𝑦 with diagonal elements

𝐸̂ 𝑘𝑘
𝑦 =

{
0 if (𝐸⊥

𝑦 )𝑘𝑘 = 0,
1/(𝐸⊥

𝑦 )𝑘𝑘 otherwise,

and set 𝑅̂𝑦 := 𝑄𝑦
⊤𝐸̂𝑦𝑄𝑦. Note that Π𝑦 := 𝐸̂𝑦𝐸

⊥
𝑦 has diagonal elements Π𝑘𝑘

𝑦 = 1{(𝐸⊥
𝑦 )𝑘𝑘>0},
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i.e., it is the projection onto the image of 𝐸⊥
𝑦 . It follows that Π𝑦𝐸

⊥
𝑦 = 𝐸⊥

𝑦 and, hence,

𝑄𝑦
⊤Π𝑦𝑄𝑦𝑅

⊥
𝑦 = 𝑄𝑦

⊤Π𝑦𝐸
⊥
𝑦 𝑄𝑦 = 𝑄𝑦

⊤𝐸⊥
𝑦 𝑄𝑦 = 𝑅⊥

𝑦 . (23)

Let 𝑍̂⊥ := 𝑅̂𝑦 (𝑍 −𝑅𝑦 𝑍̂). It follows from d⟨𝑍̂⊥, 𝑍̂⟩𝑡 = 0 that 𝑍̂⊥ is orthogonal to 𝑍̂ . Moreover,

d⟨𝑍̂⊥⟩𝑡 = (𝑅̂𝑦)2 d⟨𝑍 − 𝑅𝑦 𝑍̂⟩𝑡 = (𝑅̂𝑦)2(I + 𝑅2
𝑦 − 2𝑅2

𝑦) d𝑡 = 𝑅̂𝑦𝑅
⊥
𝑦 d𝑡

shows that 𝑍̂⊥ is a Brownian motion with correlation matrix 𝑅̂𝑦𝑅
⊥
𝑦 by Lévy’s characterization

theorem. In particular, 𝑍̂⊥ is a martingale. Finally, it follows from (23) that 𝑅𝑦 𝑍̂+𝑅⊥
𝑦 𝑍̂

⊥ = 𝑍 .

Substituting this decomposition of 𝑍 into (5) for the PPE 𝐴 yields

d𝑊 𝑖
𝑡 = 𝑟 (𝑊 𝑖

𝑡 − 𝑔𝑖 (𝑆𝑡 , 𝐴𝑡)) d𝑡 + 𝑟𝛽𝑖𝑡 (𝜎(𝑆𝑡)𝑅𝑆𝑡 d𝑍̂𝑡 − 𝜇(𝑆𝑡 , 𝐴𝑡) d𝑡)

+ 𝑟
∑︁
𝑦∈Y

𝛿𝑖𝑡 (𝑦) (d𝐽
𝑦
𝑡 − 𝜆𝑆𝑡− ,𝑦 (𝐴𝑡) d𝑡) + d𝑀 𝑖

𝑡 + 𝑟𝛽𝑖𝑡𝜎(𝑆𝑡)𝑅⊥
𝑆𝑡

d𝑍̂⊥
𝑡 .

(24)

Because
∫ ·

0 𝜎(𝑆𝑡) d𝑍𝑡 is strongly orthogonal to 𝑀 𝑖 by Lemma 4.1 and we have chosen 𝑍⊥

strongly orthogonal to 𝑀 𝑖, it follows from

𝜎(𝑆𝑡)𝑅𝑆𝑡 d𝑍̂𝑡 = 𝐷2
𝑆𝑡
𝜎(𝑆𝑡) d𝑍𝑡 + 𝜎(𝑆𝑡)𝑅𝑆𝑡𝑅

⊥
𝑆𝑡

d𝑍⊥
𝑡

that the diffusion term in (24) is strongly orthogonal to 𝑀𝑖 and, hence, also to the martin-
gale 𝑀̂ 𝑖 defined by d𝑀̂ 𝑖 := d𝑀 𝑖+𝑟𝛽𝑖𝑡𝜎(𝑆𝑡)𝑅⊥

𝑆𝑡
d𝑍̂⊥

𝑡 . It follows that (𝑊, 𝐴, 𝛽, 𝛿, 𝑍̂, 𝑀̂, 𝑆) is an
enforceable solution to (5) and 𝐴 is a PPE for game parameters 𝜇 and 𝜎(𝑦)𝑅𝑦 = 𝐷𝑦𝜎(𝑦). □

Proof of Lemma 8.2. For any constant 𝜂 > 0 and any strategy profile 𝐴 on a stochastic
framework (Ω,F ,F, 𝑃, 𝑍, (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z ), define the time-changed processes

𝐴̃𝑡 := 𝐴𝜂𝑡 , 𝑍̃𝑡 :=
1
√
𝜂
𝑍𝜂𝑡 , 𝐽

𝑦,𝑦′

𝑡 := 𝐽
𝑦,𝑦′

𝜂𝑡 for (𝑦, 𝑦′) ∈ Z ,
d𝑃̃𝑡

d𝑃
:=

∏
(𝑦,𝑦′)∈Z

𝜂−𝐽
𝑦,𝑦′
𝜂𝑡 e(𝜂−1)𝑡 .

Moreover, define 𝑆 based on (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z as in (21) and observe that 𝑆𝑡 = 𝑆𝜂𝑡 . Since 𝐴 is
the limit of a sequence of F-predictable processes, 𝐴̃ is the limit of a sequence of predictable
processes with respect to the time-changed filtration F̃ = (F̃𝑡)𝑡≥0. For any𝑇 > 0, 𝑃̃𝑇 defines a
probability measure equivalent to 𝑃 such that on [0, 𝑇], (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z are Poisson processes
with intensity 1 under 𝑃̃𝑇 . Arguing as in Proposition I.7.4 of Karatzas and Shreve (2017),
there exists a unique probability measure 𝑃̃ that agrees with 𝑃̃𝑡 on F̃𝑡 for every 𝑡 > 0. Thus, 𝑃̃
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will serve as new reference probability measure, under which (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z have intensity 1.
By the scaling property of Brownian motion, 𝑍̃ is an F̃-Brownian motion under both 𝑃 and
𝑃̃. Define a family (𝑄̃ 𝐴̃

𝑡 )𝑡≥0 of probability measures induced by 𝐴̃ with respect to 𝜇̃, 𝜎̃,
𝜆̃ = 𝜂𝜆, 𝑍̃ , (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z and 𝑃̃ analogously as in (22). Because 𝑃̃ is equivalent to 𝑃 on F𝑡

for any 𝑡 > 0, (𝑄̃ 𝐴̃
𝑡 )𝑡≥0 can also be represented via a density process with respect to 𝑃. Since

(𝐽𝑦,𝑦
′

𝑡 )𝑡≥0 are Poisson processes with intensity 𝜂 under 𝑃, it follows that

d𝑄̃ 𝐴̃
𝑡

d𝑃
= E𝑡

©­«
∫ ·

0
𝜇̃(𝑆𝑠, 𝐴̃𝑠

⊤) (𝜎̃−1(𝑆𝑠))
⊤d𝑍̃𝑠 +

∑︁
(𝑆𝑠− ,𝑦)∈Z

∫ ·

0

(
𝜆̃𝑆𝑠− ,𝑦 ( 𝐴̃𝑠)

𝜂
− 1

) (
d𝐽𝑆𝑠− ,𝑦𝑠 − 𝜂 d𝑠

)ª®¬
= E𝑡

(∫ ·

0
𝜇̃(𝑆𝜂𝑠, 𝐴𝜂𝑠)⊤(𝜎̃−1(𝑆𝜂𝑠))

⊤d𝑍𝜂𝑠√
𝜂

+
∑︁

(𝑆𝜂𝑠− ,𝑦)

∫ ·

0
(𝜆𝑆𝜂𝑠− ,𝑦 (𝐴𝜂𝑠) −1)

(
d𝐽𝑆𝜂𝑠− ,𝑦𝜂𝑠 −𝜂 d𝑠

))
.

Since 𝜎̃−1(𝑦) 𝜇̃(𝑦)/√𝜂 = 𝜎−1(𝑦)𝜇(𝑦) for each 𝑦 by assumption, substituting d𝑠 = 𝜂 d𝑠 yields

d𝑄̃ 𝐴̃
𝑡

d𝑃
= E𝜂𝑡

(∫ ·

0
𝜇(𝑆𝑠, 𝐴𝑠)⊤(𝜎−1(𝑆𝑠))

⊤d𝑍𝑠+
∑︁

(𝑆𝑠− ,𝑦)∈Z

∫ ·

0
(𝜆𝑆𝑠− ,𝑦 (𝐴𝑠)−1) (d𝐽𝑆𝑠− ,𝑦

𝑠
−d𝑠)

)
=

d𝑄𝐴
𝜂𝑡

d𝑃
,

hence 𝑄̃ 𝐴̃
𝑡 coincides with𝑄𝐴

𝜂𝑡 on F̃𝑡 =F𝜂𝑡 . By substituting d𝑠 = 𝜂 d𝑠, we obtain for every 𝑡 ≥ 0,

𝑊̃ 𝑖
𝑡 (𝑆, 𝐴̃; 𝜂𝑟, 𝜇̃, 𝜎̃, 𝜂𝜆) =

∫ ∞

𝑡

𝜂𝑟e−𝜂𝑟 (𝑠−𝑡) E
𝑄̃ 𝐴̃

𝑠

[
𝑔𝑖

(
𝑆𝑠, 𝐴̃𝑠

) �� F̃ 𝑡

]
d𝑠 (25)

=

∫ ∞

𝜂𝑡

𝑟e−𝑟 (𝑠−𝜂𝑡) E𝑄𝐴
𝑠

[
𝑔𝑖 (𝑆𝑠, 𝐴𝑠)

��F𝜂𝑡

]
d𝑠 =𝑊 𝑖

𝜂𝑡 (𝑆, 𝐴; 𝑟, 𝜇, 𝜎, 𝜆),

where we have used that 𝑄̃ 𝐴̃
𝑠 and 𝑄𝐴

𝑠
coincide on F̃𝑠. Because there is a one-to-one corre-

spondence of deviations of (𝐴𝜂𝑡)𝑡≥0 to deviations of 𝐴, it follows from (25) that (𝐴𝜂𝑡)𝑡≥0 is a
PPE with respect to (𝜂𝑟, 𝜇̃, 𝜎̃, 𝜂𝜆) if and only if 𝐴 is a PPE with respect to (𝑟, 𝜇, 𝜎, 𝜆). □

Proof of Corollary 8.3. Let 𝑤0 ∈ E (𝑟, 𝜇, 𝜎, 𝜆; 𝑦) be attained by a PPE 𝐴. By Lemma 8.2,
there exists a time-changed PPE with respect to parameters (𝜂𝑟, 𝜇, 𝜎/√𝜂, 𝜂𝜆) that attains 𝑤0.
Finally, the result follows from an application of Lemma 8.1 to 𝐷𝑦 =

√
𝜂 I for each state 𝑦. □

A.2 Markov-perfect equilibria

Proof of Proposition 6.9. Fix a stationary strategy profile 𝐴 = 𝛼∗(𝑆). For any state 𝑦, let 𝑆𝑦

denote the state process defined in (21) with initial state 𝑦 and set𝑤𝑦 := 𝑊0(𝑦, 𝛼∗(𝑆𝑦)). Fix an
arbitrary stopping time 𝜏 and define the times-shifted processes 𝐽𝑦,𝑦′ := 𝐽

𝑦,𝑦′

· +𝜏 − 𝐽
𝑦,𝑦′
𝜏 for every
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(𝑦, 𝑦′) ∈ Z . Let 𝑆 be defined as in (21) from processes (𝐽𝑦,𝑦′)(𝑦,𝑦′)∈Z with initial state 𝑆𝜏.
Since 𝐽𝑦,𝑦′ is a Lévy process for every (𝑦, 𝑦′) ∈ Z , the process 𝐽𝑦,𝑦′ is identically distributed as
𝐽𝑦,𝑦

′ . In particular, on {𝑆𝜏 = 𝑦}, the process 𝑆 is identically distributed as 𝑆𝑦. This implies that

𝐴̃ := 𝐴 · +𝜏 = 𝛼∗(𝑆 · +𝜏) = 𝛼∗(𝑆) =
∑︁
𝑦∈Y

𝛼∗(𝑆)1{𝑆𝜏=𝑦}
d
=
∑︁
𝑦∈Y

𝛼∗(𝑆𝑦)1{𝑆𝜏=𝑦} .

Consequently, it follows that

𝑊𝜏 (𝑆𝜏, 𝐴) = 𝑊0(𝑆𝜏, 𝛼∗(𝑆))
d
=
∑︁
𝑦∈Y

𝑊0(𝑦, 𝛼∗(𝑆𝑦))1{𝑆𝜏=𝑦} =
∑︁
𝑦∈Y

𝑤𝑦1{𝑆𝜏=𝑦} .

Since 𝜏 was arbitrary, this shows that 𝑊 (𝑆0, 𝐴) = 𝑤∗(𝑆), where 𝑤∗(𝑦) = 𝑤𝑦 for each state 𝑦.
In particular, 𝑊 (𝑆0, 𝐴) is locally constant where 𝑆 is constant. Together with Lemma 4.1,
this implies that 𝛽 = 0, 𝑀 = 0, and 𝛿(𝑦′) = 𝛿∗(𝑆−, 𝑦′) for every 𝑦′ such that:

(i) Δ𝑊 = 𝑤∗(𝑦′)−𝑤∗(𝑦) when the state changes from 𝑦 to 𝑦′, hence 𝛿∗(𝑦, 𝑦′) satisfies (16).

(ii) The drift rate of (5) is 0 in every state 𝑦, implying the decomposition

𝑤∗(𝑦) = 𝑔(𝑦, 𝛼∗(𝑦)) +
∑︁
𝑦′∈Y

𝛿∗(𝑦, 𝑦′)𝜆𝑦,𝑦′ (𝛼∗(𝑦)). (26)

Substituting the expression for 𝛿∗(𝑦, 𝑦′) into (26) and solving for 𝑟𝐺∗ yields

𝑟𝐺∗ = 𝑤∗(diag(𝑟1 + 1Λ∗) − Λ∗). (27)

Abbreviate 𝐷 = diag(𝑟1 + 1Λ∗) and observe that 𝐷−1Λ∗ is substochastic since the multipli-
cation with 𝐷−1 divides each row of Λ∗ by its sum plus 𝑟. It follows that 𝐷−1(𝐷 − Λ∗) =
I − 𝐷−1Λ∗ is diagonally dominant, hence invertible. Thus, 𝐷 − Λ is invertible and (16) fol-
lows from (27). The second statement now follows from Lemma 4.3. □

B Iterative construction of PPE

B.1 Feasibility

Proof of Lemma 5.2. Fix a strategy profile 𝐴 with continuation value 𝑊 and (𝛽, 𝛿) given
by (5) such that 𝑊 + 𝑟𝛿(𝑦′) ∈ W𝑦′ . Suppose towards a contradiction that 𝑊0 ∉ V𝑦 (W).
Because V𝑦 (W) is convex, there exists some 𝑁 such that 𝑁⊤(𝑊0 − 𝑣) > 0 for all 𝑣 ∈ V𝑦 (W).
For any 𝛼, let 𝑣𝛼 be the payoff pair that maximizes V𝑦 (W) in direction 𝑁 among those that are
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decomposable by 𝛼 and some 𝛿𝛼. Since 𝑣𝛼+𝑟𝛿𝛼 (𝑦′) maximizesW𝑦′ in direction 𝑁 , we obtain

𝑟𝑁⊤(𝛿𝐴𝑡
(𝑦′) − 𝛿𝑡 (𝑦′)) = 𝑁⊤(𝑣𝐴𝑡

+ 𝑟𝛿𝐴𝑡
(𝑦′) −𝑊𝑡 − 𝑟𝛿𝑡 (𝑦′)) + 𝑁⊤(𝑊𝑡 − 𝑣𝐴𝑡

) > 0.

It follows that the drift rate of 𝑊 points away from V𝑦 (W) because

𝑁⊤(𝑊𝑡 − 𝑔(𝑦, 𝐴𝑡) − 𝛿𝑡𝜆(𝑦, 𝐴𝑡)) > 𝑁⊤(𝑊𝑡 − 𝑔(𝑦, 𝐴𝑡) − 𝛿𝐴𝑡
𝜆(𝑦, 𝐴𝑡)) = 𝑁⊤(𝑊𝑡 − 𝑣𝐴𝑡

) > 0.

Since the sensitivity to the public signal is a martingale, the distance of 𝑊 from V𝑦 (W)
increases superlinearly in expectation on J0, 𝜏1)). Because 𝜏1 is unbounded, 𝑊 escapes V0

with positive probability, violating feasibility of 𝑊0. □

B.2 Self-generation and mutual stationarity

Proof of Lemma 4.8.

(i) If W generates itself, it must satisfy W𝑦 ⊆ B𝑦 (W) by maximality of B𝑦 (W).

(ii) By definition, if a set X is generated by W , it is generated by any superset of W .

(iii) Since E is self-generating by Lemma 4.7, (i) implies that E (𝑦) ⊆ B𝑦 (E). Therefore,
(ii) implies B𝑦 (E) is self-generating and, hence, B𝑦 (E) ⊆ E (𝑦) by maximality of E .

(iv) If 𝑦 is absorbing, then 𝜏1 = ∞ a.s., hence the definition of a set being generated by W
reduces to the definition of self-generation in Sannikov (2007). □

Proof of Lemma 6.6.

(i) If any 𝑤 ∈ W𝑦 is W-stationary, then 𝑊𝑦 ⊆ S𝑦 (W) by maximality of S𝑦 (W).

(ii) If X is stationary with respect to W , it is stationary for any superset of W . □

Proof of Lemma 6.7. We first show that any payoff pair in a family W of bounded mutually
stationary payoff sets can be attained by a state-order dependent PPE. Fix initial state 𝑦0 and
𝑤0 ∈ W𝑦0 . By definition of mutual stationarity, there exists (𝛼0, 𝛿0) decomposing 𝑤0 on W
in state 𝑦 such that (0, 𝛿0) enforces 𝛼0. A solution to (5) for 𝐴 ≡ 𝛼0, 𝛽 ≡ 0, 𝛿 ≡ 𝛿0, and
𝑀 ≡ 0 starting at 𝑤0 thus remains in 𝑤0 until the time 𝜏1 of the first state transition. The
choice of 𝛿0 implies that 𝑊𝜏1 ∈ W𝑆𝜏1

. Moreover, 𝑊𝜏1 = 𝑤0 + 𝑟𝛿0(𝑦′) is constant on each
event

{
𝑆𝜏1 = 𝑦′

}
. By definition of mutual stationarity, for each 𝑦′ there exist (𝛼1(𝑦′), 𝛿1(𝑦′))

decomposing 𝑤0 + 𝑟𝛿0(𝑦′) on W such that (0, 𝛿1(𝑦′)) enforces 𝛼1(𝑦′). Thus, 𝑊𝜏1 can be
attained by a locally constant solution to (5) that remains at 𝑊𝜏1 until time 𝜏2 with 𝑊𝜏2 ∈
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W𝜏2 , etc. Since there are countably many state transitions, a concatenation will yield an
enforceable solution to (5) on [0,∞), which is a PPE by Lemma 4.3. Moreover, it is state-
order dependent because 𝛼𝑘 is a function of (𝑦0, 𝑆𝜏1 , . . . , 𝑆𝜏𝑘 ).

To show that E𝑠 is mutually stationary, fix 𝑦0, 𝑤0 ∈ E𝑠 (𝑦0), and a state-order dependent
PPE 𝐴 attaining 𝑤0. Fix an arbitrary stopping time 𝜏. It follows along the same lines as in the
proof of Proposition 6.9 that𝑊𝜏 (𝑦0, 𝐴) = 𝑤0 on the event {𝜏 < 𝜏1}. Since 𝜏 was arbitrary,𝑊
has to be locally constant on J0, 𝜏1)). Lemma 4.1 thus implies that 𝛽 ≡ 0, 𝑀 ≡ 0, and 𝛿 ≡ 𝛿0

for some 𝛿0 that satisfies 𝑤0 = 𝑔(𝑦0, 𝐴0) + 𝛿0𝜆(𝑦0, 𝐴0). State-order dependence implies that
also the continuation profile after 𝜏1 is state-order dependent, hence 𝑤0 + 𝑟𝛿0(𝑦) = 𝑊𝜏1 ∈
E𝑠 (𝑦′) on each event

{
𝑆𝜏1 = 𝑦′

}
. Finally, since 𝐴 is a PPE, Lemma 4.3 implies that (0, 𝛿0)

enforces 𝐴0. Because 𝑦0 and 𝑤0 were arbitrary, it follows that E𝑠 is mutually stationary. □

B.3 Convergence of the algorithms

Proof of Proposition 6.8. We show an iterated application of convS to W̃0 = (V∗
0 , . . . ,V

∗
0 )

converges to E𝑟 . Convergence of an iterated application ofS to E𝑠 follows along the same lines
without the public randomization. Since 𝐵𝑦 (V∗

0 ) is convex, Lemma 7.4 implies S𝑦 (V∗
0 ) ⊆

convS𝑦 (V∗
0 ) ⊆ B𝑦 (V∗

0 ). If continuation payoffs come from V∗
0 , then the strategy of myopic

best responses until the first state transition must deliver at least 𝑣𝑖 before and after the state
transition, hence B𝑦 (V∗

0 ) ⊆ V∗
0 . Since S𝑦 is monotone, it follows that W̃𝑛 is monotonically

decreasing in the set-inclusion sense with W̃𝑛
𝑦 ⊇ E𝑟 (𝑦). Thus, (W̃𝑛)𝑛≥0 converges to some

limit W̃∞ that satisfies W̃∞
𝑦 ⊇ E𝑟 (𝑦) for each 𝑛. It remains to show that W̃∞

𝑦 ⊆ convS𝑦 (W̃∞)
so that W̃∞ is mutually stationary by Lemma 6.6, hence equal to E𝑟 by Lemma 6.7.

Fix an arbitrary state 𝑦 and 𝑤 ∈ W̃∞
𝑦 . Since 𝑤 ∈ W̃𝑛

𝑦 = convS𝑦 (W̃𝑛−1) for each 𝑛,
Carathéodory’s theorem implies that there exist three (potentially identical) payoff pairs 𝑤𝑛,1,
𝑤𝑛,2, and 𝑤𝑛,3 such that 𝑤 lies in their convex hull, and each 𝑤𝑛,𝑘 is decomposed by some
(𝛼𝑛,𝑘 , 𝛿𝑛,𝑘 ). Since A(𝑦) is finite, by passing to a subsequence we may assume that A⋄ :=
supp(𝛼𝑛,𝑘 ) is constant along the entire sequence. Let X (W) denote the set of all (𝛼, 𝛿) ∈
ΥA⋄ that satisfy 𝑔(𝑦, 𝛼) + 𝛿𝜆(𝑦, 𝛼) + 𝑟𝛿(𝑦′) ∈ W𝑦′ for each 𝑦′ ∈ Y , and observe that X (W)
is compact. The decomposition of each 𝑤𝑛,𝑘 implies that (𝛼𝑛,𝑘 , 𝛿𝑛,𝑘 ) lies in X (W̃𝑛−1).
Because the entire sequence is contained in the compact set X (V∗

0 ), it must converge along
a subsequence (𝑛ℓ)ℓ≥0 to some limit (𝛼𝑘 , 𝛿𝑘 ) ∈ X (V∗

0 ). Because the sets W̃𝑚 are nested, for
any 𝑚 there exists ℓ(𝑚) such that the subsequence remains in the compact set X (W̃𝑚) for
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all 𝑛ℓ(𝑚) > 𝑚. Therefore, the limit must lie in X (W̃𝑚) for each 𝑚, hence also in X (W̃∞). In
particular 𝑤𝑘 := 𝑔(𝑦, 𝛼𝑘 ) + 𝛿𝑘𝜆(𝑦, 𝛼𝑘 ) lies in S𝑦 (W̃∞). Continuity of 𝑔 and 𝜆 implies that
𝑤𝑘 must be the limit of 𝑤𝑛,𝑘 = 𝑔(𝑦, 𝛼𝑛,𝑘 ) + 𝛿𝑛,𝑘𝜆(𝑦, 𝛼𝑛,𝑘 ), Thus, 𝑤 must lie in the convex hull
of 𝑤1, 𝑤2 and 𝑤3 as, otherwise, 𝑤 would not be in the convex hull of 𝑤𝑛,1, 𝑤𝑛,2, and 𝑤𝑛,3 for
𝑛 sufficiently large. This shows that 𝑤 ∈ convS𝑦 (W̃∞), and completes the proof. □

The proof of Proposition 4.9 proceeds along similar lines, except that establishing W∞
𝑦 ⊆

B𝑦 (W∞) is more challenging. However, since that step requires only minor adaptations from
the corresponding proof in Bernard (2024), it is deferred to Online Appendix H.3.

C Enforceability

Proof of Lemma 4.5. Suppose first that Condition (i) holds. Let 𝑀 𝑖
𝑦 (𝑎𝑖, 𝛼−𝑖),Λ𝑖

𝑦 (𝑎𝑖, 𝛼−𝑖), and
𝐺𝑖

𝑦 (𝑎𝑖, 𝛼−𝑖) denote the linear extensions of 𝑀 𝑖
𝑦 (𝑎),Λ𝑖

𝑦 (𝑎), and𝐺𝑖
𝑦 (𝑎) defined in Definition 4.4

and in Section 7.1, respectively. Assumption 1.(ii.a) implies that 𝑀𝑖
𝑦 (𝑎𝑖, 𝛼−𝑖) = 𝑀 𝑖 (𝑎𝑖) is

independent of 𝛼−𝑖.12 Since 𝑀 𝑖
𝑦 (𝑎𝑖) has full rank, it is invertible, hence for any 𝛼−𝑖 and any 𝛿𝑖,

there exists 𝛽𝑖 that satisfies 𝛽𝑖𝑀 𝑖
𝑦 (𝑎𝑖) = −𝐺𝑖

𝑦 (𝑎𝑖, 𝛼−𝑖) − 𝛿𝑖Λ𝑖
𝑦 (𝑎𝑖, 𝛼−𝑖). If all enforceability

constraints hold with equality, player 𝑖 is indifferent among all pure actions, hence they are
willing to play any mixed action against 𝛼−𝑖. To show that Assumption 1.(ii.c) holds, fix
arbitrary 𝛼−𝑖 and 𝛿, and let 𝑎𝑖∗ denote a maximizer of 𝑔𝑖 (𝑦, 𝑎𝑖, 𝛼−𝑖) + 𝛿𝑖𝜆(𝑦, 𝑎𝑖, 𝛼−𝑖). Then
𝛿 provides sufficient incentives to player 𝑖 with 𝛽𝑖 = 0, and incentives for player −𝑖 can be
provided by 𝛽−𝑖 that solves the enforceability constraints with equality.

Suppose next that Condition (ii) holds. Because 𝜇 and𝜆 are affine, a mixed action𝛼𝑖 affects
the distribution of state transitions and the public signal only through its expected value 𝛼̄𝑖 :=∑

𝑎𝑖 𝛼
𝑖 (𝑎𝑖)𝑎𝑖. Thus, 𝛼 is enforceable only if for both players 𝑖, 𝛼𝑖 maximizes 𝑔𝑖 (𝑦, 𝛼̃𝑖, 𝛼−𝑖)

among all actions 𝛼̃𝑖 with identical expected value. Otherwise, there exists a deviation with
a higher flow payoff that is indistinguishable from 𝛼𝑖. Phrased differently, 𝛼 is enforceable
only if for both players 𝑖, the expected flow payoff 𝑔𝑖 (𝑦, 𝛼) lies on the concave envelope

𝑔𝑖cav(𝑦, 𝑥, 𝛼−𝑖) = max
𝛼𝑖 :𝛼̄𝑖=𝑥

𝑔𝑖 (𝑦, 𝛼)

12There exists a change of basis matrix 𝑄𝑦 with 𝑄𝑦 𝑀̃
𝑖
𝑦 (𝑎) = 𝑀 𝑖

𝑦 (𝑎) such that 𝑎1 affects only the first 𝑚
dimensions of 𝑀̃ 𝑖

𝑦 (𝑎) and 𝑎2 affects only the remaining ones. The argument that 𝑀̃ 𝑖
𝑦 (𝑎) is independent of 𝑎−𝑖

is then identical to the argument for state processes with a product structure in the proof of Lemma 5.5.
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of 𝑔𝑖 (𝑦, · , 𝛼−𝑖) when plotted against the expected action taken by player 𝑖. Fix an action
profile𝛼, for which𝛼𝑖 attains this maximum for 𝑖 = 1, 2, and fix any 𝛿. Since 𝜇 is affine without
being constant, there exist vectors 𝑐𝑖𝑦 and 𝑏𝑖𝑦 ≠ 0 such that 𝜇(𝑦, 𝑎̃𝑖, 𝛼−𝑖)−𝜇(𝑦, 𝛼) = 𝑐𝑖𝑦+𝑏𝑖𝑦 (𝑎̃𝑖−
𝛼̄𝑖) for any deviation 𝑎̃𝑖. Thus, action profile 𝛼 is enforced by (𝛽, 𝛿) in state 𝑦 for any 𝛽 with
−𝛽𝑖𝑏𝑖𝑦 between the left- and right-derivatives of 𝑔𝑖cav(𝑦, 𝛼̄𝑖, 𝛼−𝑖) + 𝛿𝑖𝜆(𝑦, 𝛼̄𝑖, 𝛼−𝑖) at 𝛼̄𝑖. Such
𝛽𝑖 exists because 𝑏𝑖𝑦 ≠ 0 and 𝑔𝑖cav(𝑦, 𝛼̄𝑖, 𝛼−𝑖) + 𝛿𝑖𝜆(𝑦, 𝛼̄𝑖, 𝛼−𝑖) is concave in 𝛼̄𝑖 for any 𝛿𝑖 since
𝜆 is affine. In particular, 𝛼 is enforceable if and only if 𝑔𝑖 (𝑦, 𝛼) = 𝑔𝑖cav(𝑦, 𝛼) for both players 𝑖.

To show that Assumption 1.(ii.c) holds, fix an arbitrary enforceable action profile 𝛼, which
necessitates 𝑔−𝑖 (𝑦, 𝛼) = 𝑔−𝑖cav(𝑦, 𝛼). Together with strict concavity of 𝑔−𝑖, this implies that 𝛼−𝑖

is either a pure action or a mixture between two adjacent pure actions. In particular, (𝑎𝑖, 𝛼−𝑖)
is enforceable for any 𝑎𝑖. Fix now arbitrary 𝛿 and let 𝑎𝑖∗ denote a maximizer of 𝑔𝑖 (𝑦, 𝑎𝑖, 𝛼−𝑖) +
𝛿𝑖𝜆(𝑦, 𝑎𝑖, 𝛼−𝑖). Because (𝑎𝑖∗, 𝛼−𝑖) is enforceable, we can find suitable 𝛽−𝑖 as above. □

Proof of Lemma 5.5. The statement is trivial if A⋄ is a singleton because ΨA⋄ is defined
by the polyhedral constraints (10). Suppose next that Assumption 2.(i) is satisfied. Then
𝜆𝑦,𝑦′ (𝑎̃𝑖, 𝛼−𝑖) − 𝜆𝑦,𝑦′ (𝑎𝑖, 𝛼−𝑖) does not depend on 𝛼−𝑖 for any state 𝑦′: player −𝑖 cannot affect
the intensity of states 𝑦′ ∈ Y𝑖 and the difference is 0 for states 𝑦′ ∈ Y−𝑖 for any 𝛼−𝑖. It follows
that the constraints (10) are affine in 𝛼−𝑖 and 𝛿𝑖. In particular, the set ΥA⋄ of all pairs (𝛼, 𝛿)
that satisfy (10) is a closed convex polyhedron. Therefore, so is its projection ΨA⋄ onto the
coordinates that correspond to 𝛿. Finally, suppose that Assumption 2.(ii) is satisfied. Let
Ψ𝑖
A𝑖

⋄
(𝛼−𝑖) denote the set of all solutions to (10) for a single player 𝑖. Since incentives are

provided along a single dimension, Ψ𝑖
A𝑖

⋄
(𝛼−𝑖) is a closed interval for any 𝛼−𝑖. We show in

Lemma F.7 thatΨ𝑖
A𝑖

⋄
(𝛼−𝑖) is continuous and monotone in 𝛼−𝑖, hence the unionΨ𝑖

A⋄
of all such

sets over supp(𝛼−𝑖) ⊆ A−𝑖
⋄ is a closed interval. Therefore,ΨA⋄ = Ψ1

A⋄
×Ψ2

A⋄
is a rectangle. □

Proof of Lemma 7.6. Under these conditions, player 𝑖’s enforceability constraints do not de-
pend on 𝛼−𝑖. Thus, mixing only reduces the set of incentives via Ψ𝑦,𝛼 =

⋂
𝑎𝑖∈supp(𝛼𝑖) Ψ𝑦,𝑎𝑖 ,𝛼−𝑖

and similarly for Ξ𝑦,𝛼 (𝑤, 𝑁,W). In particular, each optimality equation is maximized in a
pure action profile, and S𝑦,A⋄ (W) ⊆

⋂
𝑎∈A⋄

S𝑦,𝑎 (W) and K𝑦,A⋄ (W) ⊆
⋂

𝑎∈A⋄
K𝑦,𝑎 (W). □
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